Citation: Wu Kuangheng, Zhou Yawei, Ma Xianyin, Ding Chen, Cai Wenbin. Controlled Synthesis of Gold-Platinum Catalysts for Ethanol Electro-oxidation Reaction[J]. Acta Chimica Sinica, ;2018, 76(4): 292-297. doi: 10.6023/A17110478 shu

Controlled Synthesis of Gold-Platinum Catalysts for Ethanol Electro-oxidation Reaction

  • Corresponding author: Cai Wenbin, wbcai@fudan.edu.cn
  • Received Date: 2 November 2017
    Available Online: 9 April 2018

    Fund Project: 973 program 2015CB932303the National Natural Science Foundation of China 21733004Science and Technology Commission of Shanghai Mu-nicipality 17520711200Project supported by the National Natural Science Foundation of China (Nos. 21473039, 21733004), Science and Technology Commission of Shanghai Mu-nicipality (No. 17520711200) and 973 program (No. 2015CB932303)the National Natural Science Foundation of China 21473039

Figures(8)

  • Ethanol oxidation reaction (EOR) is a common anode process for direct ethanol fuel cell (DEFC) and ethanol reforming electrolyzer. Au@Pt and AuPt alloy are widely used bimetallic catalysts, yet no comparative study has been reported of electrocatalysis of EOR on these two differently structured catalysts. The present work aims to synthesize and characterize carbon supported Au@Pt and AuPt with controlled composition and size, and compare their electrocatalytic activities and stabilities toward EOR in alkaline media. For the synthesis of Au@Pt/C, a 5-nm Au colloid was first obtained by adding excessive amount of sodium borohydride to a chloroauric acid precursor containing sodium citrate with a mixed ice-water bath. CO gas was bubbled into the Au colloidal solution at 60℃ under strong stirring to reduce a desired amount of potassium tetrachloroplatinate(Ⅱ) to terminate Pt quasi-monolayer shell on Au nanoparticle core. A sonicated carbon black (Vulcan XC-72) aqueous slurry was then dropwise added to the above Au@Pt colloid, and the mixture was kept stirring for 48 h to ensure the exhaustive loading of Au@Pt nanoparticles onto the carbon support. For the synthesis of AuPt/C with the same Au:Pt molar ratio and metal loading as that for Au@Pt/C, coreduction of the Au(Ⅲ) and Pt(Ⅱ) species was attained by using sodium borohydride as the reducing agent with the rest procedures being same as the above mentioned. X-ray diffractometry (XRD) revealed that the diffraction peaks for Au@Pt/C were virtually same as those for Au/C, consistent with a Pt quasi-monolayer, while the diffraction peaks for AuPt/C located in between those for Au/C and Pt/C. X-ray photoelectron spectroscopy (XPS) results were consitent with the different structures of the two catalysts, and the Pt core level shift suggested an upshift of Pt d-band center for both bimetallic catalysts. Cyclic voltammetry and chronoamperometry revealed markedly increased EOR current on Au@Pt/C and AuPt/C, as compared to that of Pt/C and Au/C. CO-stripping voltammetry on Au@Pt/C and AuPt/C indicated that surface reconstruction occurred by potential cycling, resulting in a decrease of exposed Pt sites but not the electrocatalytic activities. 1H NMR analysis confirmed the C2 pathway is predominant. Nevertheless, Au@Pt/C outperformed AuPt/C and Pt/C with a lower onset oxidation potential and a higher peak current for EOR, as well as a slightly higher selectivity toward C1 pathway. Although the synergetic effect of Au-Pt bimetallic interface for EOR is not well understood, the enhanced adsorption of ethanol, OH, acetyl and CO on Pt sites may be accountable for the observed results.
  • 加载中
    1. [1]

      Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Liang, W.; Yu, S. H. Angew. Chem., Int. Ed. 2013, 52, 7472.  doi: 10.1002/anie.201302090

    2. [2]

      Coutanceau, C.; Baranton, S. WIREs Energy Environ. 2016, 5, 388.  doi: 10.1002/wene.193

    3. [3]

      de Lucas-Consuegra, A.; Ana, R.; Calcerrada, A. B.; Linares, J. J.; Horwat, D. J. Power Sources 2016, 321, 248.  doi: 10.1016/j.jpowsour.2016.05.004

    4. [4]

      Chen, H. M.; Xing, Z. L.; Zhu, S. Q.; Zhang, L. L.; Chang, Q. W.; Huang, J. L.; Cai, W. B.; Kang, N.; Zhong, C. J.; Shao, M. H. J. Power Sources 2016, 321, 264.  doi: 10.1016/j.jpowsour.2016.04.072

    5. [5]

      Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Léger, J. M. J. Power Sources 2002, 105, 283  doi: 10.1016/S0378-7753(01)00954-5

    6. [6]

      Rao, L.; Jiang, Y. X.; Zhang, B. W.; You, L. X. H.; Li, Z. H.; Sun, S. G. Prog. Chem. 2014, 26, 727(in Chinese).
       

    7. [7]

      Zheng, H. T.; Li, Y.; Chen, S.; Shen, P. K. J. Power Sources 2006, 163, 371.  doi: 10.1016/j.jpowsour.2006.09.062

    8. [8]

      Wang, Y.; Zou, S.; Cai, W. B. Catalysts 2015, 5, 1507.  doi: 10.3390/catal5031507

    9. [9]

      Xu, C. W.; Cheng, L. Q.; Shen, P. K.; Liu, Y. L. Electrochem. Commun. 2007, 9, 997.  doi: 10.1016/j.elecom.2006.12.003

    10. [10]

      Wang, Y.; Jiang, K.; Cai, W. B. Electrochim. Acta 2015, 162, 100.  doi: 10.1016/j.electacta.2014.11.182

    11. [11]

      Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Top. Catal. 2007, 46, 249.  doi: 10.1007/s11244-007-9003-x

    12. [12]

      Mulvaney, S. P.; Keating, C. D. Anal. Chem. 2000, 72, 145.  doi: 10.1021/a10000155

    13. [13]

      Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362.  doi: 10.1126/science.1120560

    14. [14]

      Song, H. M.; Anjum, D. H.; Sougrat, R.; Hedhili, M. N.; Khashab, N. M. J. Mater. Chem. 2012, 22, 25003.  doi: 10.1039/c2jm35281h

    15. [15]

      Chen, Y. G.; Zhuang, L.; Lu, J. T. Chin. J. Catal. 2007, 28, 870(in Chinese).  doi: 10.3321/j.issn:0253-9837.2007.10.007

    16. [16]

      Li, J. F.; Yang, Z. L.; Ren, B.; Liu, G. K.; Fang, P. P.; Jiang, Y. X.; Wu, D. Y.; Tian, Z. Q. Langmuir 2006, 22, 10372.  doi: 10.1021/la061366d

    17. [17]

      Dai, Y.; Chen, S. L. ACS Appl. Mater. 2014, 7, 823.
       

    18. [18]

      Brankovic, S. R.; Wang, J. X.; Adžić, R. R. Surf. Sci. 2001, 474, 173.  doi: 10.1016/S0039-6028(00)01103-1

    19. [19]

      Liu, Y.; Gokcen, D.; Bertocci, U.; Moffat, T. P. Science 2012, 338, 1327.  doi: 10.1126/science.1228925

    20. [20]

      Engelbrekt, C.; Šešelj, N.; Poreddy, R.; Riisager, A.; Ulstrup, J.; Zhang, J. D. J. Mater. Chem. A 2016, 4, 3278.  doi: 10.1039/C5TA08922K

    21. [21]

      Zhou, Y. W.; Du, C. Y.; Han, G.; Gao, Y. Z.; Yin, G. P. Electrochim. Acta 2016, 217, 203.  doi: 10.1016/j.electacta.2016.09.070

    22. [22]

      Xu, C. X.; Wang, R. Y.; Chen, M. W.; Zhang, Y.; Ding, Y. Phys. Chem. Chem. Phys. 2010, 12, 239.  doi: 10.1039/B917788D

    23. [23]

      Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. J. Phys. Chem. B 2006, 110, 24606.  doi: 10.1021/jp0640979

    24. [24]

      Xu, Y. Y.; Dong, Y. N.; Shi, J.; Xu, M. L.; Zhang, Z. F.; Yang, X. K. Catal. Commun. 2011, 13, 54.  doi: 10.1016/j.catcom.2011.06.018

    25. [25]

      Ye, W.; Kou, H.; Liu, Q.; Yan, J.; Zhou, F.; Wang, C. Int. J. Hydrogen Energ. 2012, 37, 4088.  doi: 10.1016/j.ijhydene.2011.11.132

    26. [26]

      Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Phys. Rev. Lett. 2004, 93, 156801.  doi: 10.1103/PhysRevLett.93.156801

    27. [27]

      Demirci, U. B. J. Power Sources 2007, 173, 11.  doi: 10.1016/j.jpowsour.2007.04.069

    28. [28]

      Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.  doi: 10.1021/jp0653510

    29. [29]

      Zhu, C.; Hai, Y.; Zhao, Z. G.; Yang, Y. Y. Acta Chim. Sinica 2017, 76, 30. in Chinese
       

    30. [30]

      Zhou, W.; Lee, J. Y. Electrochem. Commun. 2007, 9, 1725.  doi: 10.1016/j.elecom.2007.03.016

    31. [31]

      Maillard, F.; Savinova, E. R.; Stimming, U. J. Electroanal. Chem. 2007, 599, 221.  doi: 10.1016/j.jelechem.2006.02.024

    32. [32]

      Qin, Y. H.; Yang, H. H.; Zhang, X. S.; Li, P.; Zhou, X. G.; Niu, L.; Yuan, W. K. Carbon 2010, 48, 3323.  doi: 10.1016/j.carbon.2010.05.010

    33. [33]

      Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Electrochim. Acta 2009, 54, 2203  doi: 10.1016/j.electacta.2008.10.034

    34. [34]

      Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; Van Santen, R. A. J. Electroanal. Chem. 2002, 524, 242.

    35. [35]

      McCallum, C.; Pletcher, D. J. Electroanal. Chem. 1976, 70, 277.  doi: 10.1016/S0022-0728(76)80196-9

    36. [36]

      Gilman, S. J. Phys. Chem. 1964, 68, 70.  doi: 10.1021/j100783a013

    37. [37]

      Suntivich, J.; Xu, Z.; Carlton, C. E.; Kim, J.; Han, B.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A.; Hamad-Schifferli, K.; Shao-Horn, Y. J. Am. Chem. Soc. 2013, 135, 7985.  doi: 10.1021/ja402072r

    38. [38]

      Chen, G. L.; Chen, S. P.; Zhen, C. H.; Zhou, Z. Y.; Sun, S. G. Acta Chim. Sinica 2001, 59, 1253(in Chinese).  doi: 10.3321/j.issn:0567-7351.2001.08.016
       

    39. [39]

      Bayer, D.; Berenger, S.; Joos, M.; Cremers, C.; Tübke, J. Int. J. Hydrogen Energ. 2010, 35, 12660.  doi: 10.1016/j.ijhydene.2010.07.102

    40. [40]

      Teng, X. In Materials and Processes for Energy: Communicating Current Research and Technological Developments, Atrazhev, V. V. ; Burlatsky, S. F., Formatex Research Center, Durham, 2013, pp. 473~484.

    41. [41]

      Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Nanotechnology 2008, 20, 025605.

    42. [42]

      Wang, H.; Jiang, K.; Chen, Q.; Xie, Z.; Cai, W. B. Chem. Commun. 2016, 52, 374.  doi: 10.1039/C5CC06551H

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(33)
  • Abstract views(2315)
  • HTML views(542)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return