Citation: Hu Shu-Bo, Chen Mu-Wang, Zhai Xiao-Yong, Zhou Yong-Gui. Synthesis of Tetrahydropyrrolo/indolo[1, 2-a]pyrazines by Enantioselective Hydrogenation of Heterocyclic Imines[J]. Acta Chimica Sinica, ;2018, 76(2): 103-106. doi: 10.6023/A17110476 shu

Synthesis of Tetrahydropyrrolo/indolo[1, 2-a]pyrazines by Enantioselective Hydrogenation of Heterocyclic Imines

  • Corresponding author: Zhou Yong-Gui, ygzhou@dicp.ac.cn
  • Received Date: 2 November 2017
    Accepted Date: 28 December 2017

    Fund Project: Dalian Bureau of Science and Technology 2016RD07the National Natural Science Foundation of China 21690074Project supported by the National Natural Science Foundation of China (Nos. 21532006, 21690074), the Chinese Academy of Sciences (No. QYZDJ-SSW-SLH035) and Dalian Bureau of Science and Technology (No. 2016RD07)the Chinese Academy of Sciences QYZDJ-SSW-SLH035the National Natural Science Foundation of China 21532006

Figures(3)

  • 1, 2, 3, 4-Tetrahydropyrrolo[1, 2-a]pyrazines are an important motif due to their biological activities and widely existing in natural products. Notably, the substituent and the absolute configuration are important for the medicinal efficacy. Thus, the synthesis of chiral tetrahydropyrrolo[1, 2-a]pyrazines has attracted much attention of scientists. Most synthetic methods utilized chiral starting materials or auxiliaries. Kinetic resolution was an alternative way to give chiral tetrahydropyrrolo[1, 2-a]pyrazines. The first cata-lytic asymmetric synthetic method was developed in 2011 by Li and Antilla through a chiral phosphoric acid-catalyzed asymmetric intramolecular aza-Friedel-Crafts reaction of aldehydes with N-aminoethylpyrroles in high enantiocontrol level. Subsequently, the sequential aerobic oxidation-asymmetric intramolecular aza-Friedel-Crafts reaction between N-aminoethylpyrroles and benzyl alcohols for the synthesis of tetrahydropyrrolo[1, 2-a]pyrazines was realized using chiral bifunctional heterogeneous materials composed of Au/Pd nanoparticles and chiral phosphoric acids. The asymmetric hydrogenation as an efficient way has been successfully applied to synthesize the kind of chiral amines. In 2012, Our group achieved the asymmetric hydrogenation of 1-substituted pyrrolo[1, 2-a]pyrazines via a substrate activation strategy. Recently, we reported the direct asymmetric hydrogenation of 3-substituted pyrrolo[1, 2-a]pyrazines in up to 96% ee values. Considering their impressive significance, herein, we successfully hydrogenated 3, 4-dihydropyrrolo[1, 2-a]pyrazines and 3, 4-dihydroindolo[1, 2-a]pyrazines with up to 99% yield and 95% ee. The reaction features mild condition, high enantioselectivity and high atom-economy. The typical procedure for asymmetric hydrogenation is as follows:A mixture of[Ir(COD)Cl]2 (3.0 mg, 0.0045 mmol) and the ligand Cy-WalPhos (6.6 mg, 0.0099 mmol) was stirred in toluene (1.0 mL) at room temperature for 5 min in the glove box. Then the solution was transferred to the vial containing the substrate 3, 4-dihydropyrrolo[1, 2-a]pyrazines (0.3 mmol) together with toluene (2.0 mL). The vial was taken to an autoclave and the hydrogenation was conducted at 40℃ as well as at a hydrogen pressure of 500 psi for 48 h. After carefully releasing the hydrogen, the autoclave was opened and the toluene was evaporated in vacuo. The residue was purified by column chromatography to afford the corresponding chiral tetrahydropyrrolo[1, 2-a]pyrazines.
  • 加载中
    1. [1]

      (a) Al-Mourabit, A. ; Zancanella, M. A. ; Tilvi, S. ; Romo, D. Nat. Prod. Rep. 2011, 28, 1229; (b) Papeo, G. ; Gómez-Zurita Frau, M. A. ; Borghi, D. ; Varasi, M. Tetrahedron Lett. 2005, 46, 8635.

    2. [2]

      (a) Peresada, V. P. ; Medvedev, O. S. ; Likhosherstov, A. M. ; Skoldinov, A. P. Khim. Farm. Zh. 1987, 21, 1054; (b) Seredenin, S. B. ; Voronina, T. A. ; Likhosherstov, A. M. ; Peresada, Y. P. ; Molodavkin, G. M. ; Halikas, J. A. US 5378846, 1995; (c) Seredenin, S. B. ; Voronina, T. A. ; Beshimov, A. ; Peresada, V. P. ; Likhosherstov, A. M. RU 2099055, 1997; (d) Negoro, T. ; Murata, M. ; Ueda, S. ; Fujitani, B. ; Ono, Y. ; Kuromiya, A. ; Komiya, M. ; Suzuki, K. ; Matsumoto, J. -I. J. Med. Chem. 1998, 41, 4118; (e) Likhosherstov, A. M. ; Filippova, O. V. ; Peresada, V. P. ; Kryzhanovskii, S. A. ; Vititnova, M. B. ; Kaverina, N. V. ; Reznikov, K. M. Pharm. Chem. J. 2003, 37, 6; (f) Merla, B. ; Christoph, T. ; Oberboersch, S. ; Schiene, K. ; Bahrenberg, G. ; Frank, R. ; Kuehnert, S. ; Schroeder, W. WO 2008046582, 2008[Chem. Abstr. 2008, 148, 472076]; (g) Henrich, M. ; Weil, T. ; Müller, S. ; Nagel, J. ; Gravius, A. ; Kauss, V. ; Zemribo, R. ; Erdmane, E. WO 2009095254, 2009[Chem. Abstr. 2009, 151, 221195]; (h) Gahman, T. C. ; Zhao, C. ; Lang, H. ; Massari, M. E. US 20090062253, 2009 [Chem. Abstr. 2009, 150, 283093]; (i) Zhu, B. ; Marinelli, B. A. ; Goldschmidt, R. ; Foleno, B. D. ; Hilliard, J. J. ; Bush, K. ; Macielag, M. Bioorg. Med. Chem. Lett. 2009, 19, 4933.

    3. [3]

      (a) Li, G. ; Rowland, G. B. ; Rowland, E. B. ; Antilla, J. C. Org. Lett. 2007, 9, 4065; (b) Gualandi, A. ; Cerisoli, L. ; Monari, M. ; Savoia, D. Synthesis 2011, 909; (c) Bhowmik, S. ; Kumar, A. K. S. ; Batra, S. Tetrahedron Lett. 2013, 54, 2251.

    4. [4]

      Kreituss, I.; Chen, K.-Y.; Eitel, S. H.; Adam, J.-M.; Wuitschik, G.; Fettes, A.; Bode, J. W. Angew. Chem., Int. Ed. 2016, 55, 1553.  doi: 10.1002/anie.201509256

    5. [5]

      He, Y.; Lin, M.; Li, Z.; Liang, X.; Li, G.; Antilla, J. C. Org. Lett. 2011, 13, 4490.  doi: 10.1021/ol2018328

    6. [6]

      Cheng, H.-G.; Miguélez, J.; Miyamura, H.; Yoo, W.-J.; Kobayashi, S. Chem. Sci. 2017, 8, 1356.  doi: 10.1039/C6SC03849B

    7. [7]

    8. [8]

      Huang, W.-X.; Yu, C.-B.; Shi, L.; Zhou, Y.-G. Org. Lett. 2014, 16, 3324.  doi: 10.1021/ol5013313

    9. [9]

      Hu, S.-B.; Chen, Z.-P.; Song, B.; Wang, J.; Zhou, Y.-G. Adv. Synth. Catal. 2017, 359, 2762.  doi: 10.1002/adsc.v359.16

    10. [10]

      (a) Xiao, D. ; Zhang, X. Angew. Chem. , Int. Ed. 2001, 40, 3425; (b) Wang, D. -W. ; Wang, X. -B. ; Wang, D. -S. ; Lu, S. -M. ; Zhou, Y. -G. ; Li, Y. -X. J. Org. Chem. 2009, 74, 2780; (c) Ji, Y. ; Shi, L. ; Chen, M. -W. ; Feng, G. -S. ; Zhou, Y. -G. J. Am. Chem. Soc. 2015, 137, 10496.

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    4. [4]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    5. [5]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    6. [6]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    7. [7]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    8. [8]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    12. [12]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(6)
  • Abstract views(1358)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return