Citation: Sun Quanhong, Li Zhi, Ma Nan. (NH4)2MoS4-Guided Self-Assembly of CdTe QDs and Control over Their Optical Properties and Cell Imaging[J]. Acta Chimica Sinica, ;2018, 76(1): 43-48. doi: 10.6023/A17090428 shu

(NH4)2MoS4-Guided Self-Assembly of CdTe QDs and Control over Their Optical Properties and Cell Imaging

  • Corresponding author: Ma Nan, nan.ma@suda.edu.cn
  • Received Date: 19 September 2017
    Available Online: 6 January 2017

    Fund Project: the National Natural Science Foundation of China 21175147the National Natural Science Foundation of China 91313302Project supported by the National Natural Science Foundation of China (Nos. 21175147, 91313302, 21475093), the National High Technology Research and Development Program of China (863 Program, No. 2014AA020518) and the Thousand Youth Talents Planthe National Natural Science Foundation of China 21475093the National High Technology Research and Development Program of China 863 Programthe National High Technology Research and Development Program of China 2014AA020518

Figures(9)

  • Conventionally, red shift of QD photoluminescence (PL) could be achieved by growing QDs to larger sizes using hydrothermal method, which is usually a very slow process. We synthesized green fluorescent CdTe quantum dots with GSH as the ligand and proved the successful synthesis of (NH4)2MoS4 by UV-Vis, X-Ray Diffraction, Raman spectroscopy. In the process of research, we found that (NH4)2MoS4 can change the wavelength of CdTe quantum dots under the condition of heating or at room temperature. Redshift of emission wavelength can change with the different ratio between (NH4)2MoS4and CdTe QDs. In this study, we report a rapid and convenient method to achieve red-shift of CdTe QD PL via (NH4)2MoS4-guided QD self-assembly. We show that the emission wavelength of CdTe QDs underwent a red-shift of more than 100 nm for 15 min at 100℃ in the presence of (NH4)2MoS4. At the same time, we conduct a experiment, which have no red-shift in the absence of (NH4)2MoS4 for 15 min at 100℃. This illustrates that the (NH4)2MoS4 plays an important role in CdTe QDs self-assembly. The red-shift of QD PL was also observed at room temperature but relatively slower. The formation of QD assembly was confirmed by gel electrophoresis, transmission electron microscopy, and X-ray photoelectron spectroscopy. The result of gel electrophoresis and transmission electron microscopy directly shows the self-assembly morphology of CdTe QDs and the change of size and shape. Self-assembly entity was proved to contain Mo and Cd by the X-ray photoelectron spectroscopy, which confirmed the connection between (NH4)2MoS4and CdTe QDs. A control experiment was conducted by replacing (NH4)2MoS4with Na2S for QD assembly, in that case no apparent change of emission wavelength was observed. These results reveal that MoS42- within (NH4)2MoS4 is crucial for self-assembly of CdTe QDs. Accordingly, we propose a reasonable model of (NH4)2MoS4-guided CdTe QD self-assembly. In this model, we consider the connection between a (NH4)2MoS4 and two CdTe QDs in ideal condition. With the increasing ratio of (NH4)2MoS4, much more connection between (NH4)2MoS4 and CdTe will be obtained. Assembling entity morphology changed with different cross-linking way. The resulting QD assembly was further applied to cell imaging experiments, demonstrating their potentials in this field.
  • 加载中
    1. [1]

      Ma, N.; Sargent, E. H.; Kelley, S. O. Nat. Nanotechnol. 2009, 4, 121.  doi: 10.1038/nnano.2008.373

    2. [2]

      Zhang, T.; Li, Z.; Sun, Q. H.; Ma, N. Chin. J. Anal. Chem. 44(12), 1840.

    3. [3]

      Arshad, A.; Chen, H. L.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Chin. J. Chem. 34(6), 576.  doi: 10.1002/cjoc.v34.6

    4. [4]

      Jiang, C.; Shen, Z.; Luo, C.; Lin, H.; Huang, Y.; Wang, Y.; Peng, H. Talanta 2016, 155, 14.  doi: 10.1016/j.talanta.2016.04.021

    5. [5]

      Huang, L.; Li, Z. C.; Huang, S. Q.; Peter, R.; Li, L. Acta Chim. Sinica 2017, 75, 300.
       

    6. [6]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chin. J. Chem. 2017, 35(1), 73.  doi: 10.1002/cjoc.v35.1

    7. [7]

      Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Chin. J. Chem. 2017, 35(6), 881.  doi: 10.1002/cjoc.v35.6

    8. [8]

      Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sinica 2016, 74, 620.
       

    9. [9]

      Dwarakanath, S.; Bruno, J. G.; Shastry, A.; Phillips, T.; John, A.; Kumar, A.; Stephenson, L. D. Biochem. Biophys. Res. Commun. 2004, 325, 739.  doi: 10.1016/j.bbrc.2004.10.099

    10. [10]

      Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47.  doi: 10.1038/nbt767

    11. [11]

      Wei, W.; He, X. W.; Ma, N. Angew. Chem., Int. Ed. 2014, 53, 5573.  doi: 10.1002/anie.v53.22

    12. [12]

      He, X. W.; Gao, L.; Ma, N. Sci. Rep. 2013, 3, 2825.  doi: 10.1038/srep02825

    13. [13]

      Manzoor, K.; Johny, S.; Thomas, D.; Setua, S.; Menon, D.; Nair, S. Nat. Nanotechnol. 2009, 20, 065102.  doi: 10.1088/0957-4484/20/6/065102

    14. [14]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    15. [15]

      Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435.  doi: 10.1038/nmat1390

    16. [16]

      Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S. Y.; Kantoff, P.; Langer, R.; Farokhzad, O. C. Nano Lett. 2007, 7, 3065.  doi: 10.1021/nl071546n

    17. [17]

      Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545.  doi: 10.1146/annurev.matsci.30.1.545

    18. [18]

      Burda, C.; Chen, X. B.; Narayanan, R.; EI-Sayed, M. A. Chem. Rev. 2005, 105, 1025.  doi: 10.1021/cr030063a

    19. [19]

      Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M. ACS Nano 2010, 4, 3591.  doi: 10.1021/nn100869j

    20. [20]

      Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.  doi: 10.1021/cr1004452

    21. [21]

      Deng, D.; Qu, L.; Li, Y.; Gu, Y. Langmuir 2013, 29, 10907.  doi: 10.1021/la401999r

    22. [22]

      Chen, H.; Liu, Y.; Lu, Y.; Wu, H.; Qian, H. J. Mater. Sci. 2014, 49, 4506.  doi: 10.1007/s10853-014-8149-8

    23. [23]

      An, L. M.; Yang, Y. Q.; Su, W. H.; Yi, J.; Liu, C. X.; Chao, K. F.; Zeng, Q. H. J. Nanosci. Nanotechnol. 2010, 10, 2099.  doi: 10.1166/jnn.2010.2080

    24. [24]

      Yue, D.; Qian, X.; Zhang, Z.; Kan, M.; Ren, M.; Zhao, Y. ACS Sustainable Chem. Eng. 2016, 4, 6653.  doi: 10.1021/acssuschemeng.6b01520

    25. [25]

      Zhang, C. L.; Ding, C. P.; Xiang, D. S.; Li, L.; Ji, X. H.; He, Z. K.; Xian, Y. Z. Chin. J. Chem. 2016, 34(3), 317.  doi: 10.1002/cjoc.v34.3

    26. [26]

      Li, Z.; He, X. W.; Luo, X. C.; Wang, L.; Ma, N. Anal. Chem. 2016, 88, 9355.  doi: 10.1021/acs.analchem.6b02864

    27. [27]

      Sapsford, K. E.; Pons, T.; Medintz, I. L.; Higashiya, S.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. J. Phys. Chem. C 2007, 111, 11528.  doi: 10.1021/jp073550t

    28. [28]

      Ji, X. B.; Yao, C. G.; Wan, Y.; Song, H. X.; Xin, P.; Cui, H. D.; Zheng, C. Y.; Deng, S. Y. Chin. J. Chem. 2016, 34(3), 331.  doi: 10.1002/cjoc.v34.3

    29. [29]

      Guo, Y.; Hu, Y.; Deng, Z. Chin. J. Chem. 2016, 34(3), 259.  doi: 10.1002/cjoc.v34.3

    30. [30]

      Huang, H.; Du, C.; Shi, H.; Feng, X.; Li, J.; Tan, Y.; Song, W. Part. Part. Syst. Char. 2015, 32, 72.  doi: 10.1002/ppsc.201400101

    31. [31]

      Chai, Y. M.; Zhao, H. J.; Liu, Y. Q.; Liu, C. G. Inorg. Chem. Ind. 2007, 39, 12.
       

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    6. [6]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    13. [13]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    16. [16]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

Metrics
  • PDF Downloads(2)
  • Abstract views(1824)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return