Citation: Zhao Jing, Gong Junwei, Li Yiju, Cheng Kui, Ye Ke, Zhu Kai, Yan Jun, Cao Dianxue, Wang Guiling. Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors[J]. Acta Chimica Sinica, ;2018, 76(2): 107-112. doi: 10.6023/A17090422 shu

Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors

  • Corresponding author: Wang Guiling, wangguiling@hrbeu.edu.cn
  • Received Date: 17 September 2017
    Available Online: 13 February 2017

    Fund Project: the National Natural Science Foundation of China 21503055Project supported by the National Natural Science Foundation of China (Nos. 51572052, 21503055)the National Natural Science Foundation of China 51572052

Figures(5)

  • Self N-doped porous cross-linked carbon nanosheets (N-ICNs) are prepared by one-step activation carbonization using dandelion seeds. The dandelion seeds are rich in nitrogen without any additional doping treatment, which can be served as an ideal carbon precursor. The microstructure and composition of the prepared carbon materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It can be seen from the SEM and TEM spectra that the N-ICNs exhibit the porous interconnected structure, which can facilitate the transfer of the electrons and the dispersion of the electrolyte ions. Moreover, the XRD spectra show the defects in the amorphous carbon material. Nitrogen adsorption/desorption isotherms of the N-ICNs show a high specific surface area of 1564 m2·g-1, and the pore size distribution shows numerous micropores and macropores, which contributes to the formation of double layer capacitance and the accessibility of the electrolyte ions. The wide-scan spectra present the presence of C, N and O atoms. Interestingly, the N content of the N-ICNs without any extra doping treatment is high (2.88%). Based on the high nitrogen content, the N-ICNs exhibit a good specific capacitance of 337 F·g-1 at a current density of 1 A·g-1 with an excellent capacitance retention of 99% after 10000 cycles. The good electrochemical performances mainly caused by the nitrogen functional groups in the carbon lattice, which can improve the wettability as well as provide pseudocapacitance due to the redox reactions of amine groups. In addition, the symmetric supercapacitor assembled with N-ICNs in the operating voltage range of 0~2 V shows high energy density of 25.3 Wh·kg-1 at the power density of 900 W·kg-1, which are superior than the other carbon materials reported. And the capacitance retention can retain 98% after 10000 cycles. Therefore, the low-cost biomass-derived porous interconnected carbon material can be a promising electrode material for supercapacitors.
  • 加载中
    1. [1]

      Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4, 157.
       

    2. [2]

      Wu, Z.; Li, L.; Yan, J.; Zhang, X. Adv. Sci. 2017, 4, 1600382.  doi: 10.1002/advs.201600382

    3. [3]

      Li, T.; Zhao, J.; Li, Y.; Quan, Z.; Xu, J. Acta Chim. Sinica 2017, 75, 485.
       

    4. [4]

      Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. ACS Appl. Mater. Interfaces 2013, 5, 3408.  doi: 10.1021/am400457x

    5. [5]

      Su, S.; Lai, Q.; Liang, Y. Acta Chim. Sinica 2015, 73, 735.  doi: 10.3969/j.issn.0253-2409.2015.06.014
       

    6. [6]

      Hsu, Y. H.; Lai, C. C.; Ho, C. L.; Lo, C. T. Electrochim. Acta 2014, 127, 369.  doi: 10.1016/j.electacta.2014.02.060

    7. [7]

      Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Yu, A. J. Phys. Chem. C 2011, 115, 17612.  doi: 10.1021/jp205568v

    8. [8]

      Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X.; Xu, Z.; Wang, H.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Adv. Energy Mater. 2012, 2, 431.  doi: 10.1002/aenm.v2.4

    9. [9]

      Chen, W.; Zhang, H.; Huang, Y.; Wang, W. J. Mater. Chem. 2010, 20, 4773.  doi: 10.1039/c0jm00382d

    10. [10]

      Liu, D.; Yu, S.; Shen, Y.; Chen, H.; Shen, Z.; Zhao, S.; Fu, S.; Yu, Y.; Bao, B. Ind. Eng. Chem. Res. 2015, 54, 12570.  doi: 10.1021/acs.iecr.5b02507

    11. [11]

      Hu, Z.; Li, S.; Cheng, P.; Yu, W.; Li, R.; Shao, X.; Lin, W.; Yuan, D. J. Mater. Sci. 2016, 51, 2627.  doi: 10.1007/s10853-015-9576-x

    12. [12]

      Dou, S.; Huang, X.; Ma, Z.; Wu, J.; Wang, S. Nanotechnology 2015, 26, 045402.  doi: 10.1088/0957-4484/26/4/045402

    13. [13]

      Wang, C.; Qiu, F.; Deng, H.; Zhang, X.; He, P.; Zhou, H. Acta Chim. Sinica 2017, 75, 241.
       

    14. [14]

      Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557.
       

    15. [15]

      Dias, A.; Ciminelli, V. S. T. Ferroelectrics 2000, 241, 9.  doi: 10.1080/00150190008224969

    16. [16]

      Xu, J.; He, F.; Gai, S.; Zhang, S.; Li, L.; Yang, P. Nanoscale 2014, 6, 10887.  doi: 10.1039/C4NR02756F

    17. [17]

      Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. RSC Adv. 2016, 6, 1800.  doi: 10.1039/C5RA21708C

    18. [18]

      Liu, B.; Zhou, X.; Chen, H.; Liu, Y.; Li, H. Electrochim. Acta 2016, 208, 55.  doi: 10.1016/j.electacta.2016.05.020

    19. [19]

      Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q.; Electrochem. Commun. 2008, 10, 1594.  doi: 10.1016/j.elecom.2008.08.022

    20. [20]

      Zhong, Y.; Xia, X.; Deng, S.; Zhan, J.; Fang, R.; Xia, Y.; Wang, X.; Zhang, Q.; Tu, J. Adv. Energy Mater. 2017, 201701110.
       

    21. [21]

      Cao, H.; Zhou, X.; Qin, Z.; Liu, Z. Carbon 2013, 56, 218.  doi: 10.1016/j.carbon.2013.01.005

    22. [22]

      Yang, J.; Jo, M. R.; Kang, M.; Huh, Y. S.; Jung, H.; Kang, Y.-M. Carbon 2014, 73, 106.  doi: 10.1016/j.carbon.2014.02.045

    23. [23]

      Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22, 5202.  doi: 10.1002/adma.201002647

    24. [24]

      Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Nano Energy 2015, 12, 141.  doi: 10.1016/j.nanoen.2014.12.014

    25. [25]

      Jiang, L.; Sheng, L.; Long, C.; Fan, Z. Nano Energy 2015, 11, 471.  doi: 10.1016/j.nanoen.2014.11.007

    26. [26]

      Xu, X.; Wang, M.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Energy Storage Mater. 2016, 5, 132.  doi: 10.1016/j.ensm.2016.07.002

    27. [27]

      Raymundo-Pinero, E.; Cadek, M.; Beguin, F. Adv. Funct. Mater. 2009, 19, 1032.  doi: 10.1002/adfm.v19:7

    28. [28]

      Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. J. Power Sources 2016, 302, 164.  doi: 10.1016/j.jpowsour.2015.10.063

    29. [29]

      Liu, C.; Wang, J.; Li, J.; Zeng, M.; Luo, R.; Shen, J.; Sun, X.; Han, W.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 7194.  doi: 10.1021/acsami.6b02404

    30. [30]

      Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2016, 44, 216.
       

    31. [31]

      Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Adv. Funct. Mater. 2016, 26, 111.  doi: 10.1002/adfm.201504004

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(10)
  • Abstract views(2250)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return