Citation: Zhao Jing, Gong Junwei, Li Yiju, Cheng Kui, Ye Ke, Zhu Kai, Yan Jun, Cao Dianxue, Wang Guiling. Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors[J]. Acta Chimica Sinica, ;2018, 76(2): 107-112. doi: 10.6023/A17090422 shu

Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors

  • Corresponding author: Wang Guiling, wangguiling@hrbeu.edu.cn
  • Received Date: 17 September 2017
    Available Online: 13 February 2017

    Fund Project: the National Natural Science Foundation of China 21503055Project supported by the National Natural Science Foundation of China (Nos. 51572052, 21503055)the National Natural Science Foundation of China 51572052

Figures(5)

  • Self N-doped porous cross-linked carbon nanosheets (N-ICNs) are prepared by one-step activation carbonization using dandelion seeds. The dandelion seeds are rich in nitrogen without any additional doping treatment, which can be served as an ideal carbon precursor. The microstructure and composition of the prepared carbon materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It can be seen from the SEM and TEM spectra that the N-ICNs exhibit the porous interconnected structure, which can facilitate the transfer of the electrons and the dispersion of the electrolyte ions. Moreover, the XRD spectra show the defects in the amorphous carbon material. Nitrogen adsorption/desorption isotherms of the N-ICNs show a high specific surface area of 1564 m2·g-1, and the pore size distribution shows numerous micropores and macropores, which contributes to the formation of double layer capacitance and the accessibility of the electrolyte ions. The wide-scan spectra present the presence of C, N and O atoms. Interestingly, the N content of the N-ICNs without any extra doping treatment is high (2.88%). Based on the high nitrogen content, the N-ICNs exhibit a good specific capacitance of 337 F·g-1 at a current density of 1 A·g-1 with an excellent capacitance retention of 99% after 10000 cycles. The good electrochemical performances mainly caused by the nitrogen functional groups in the carbon lattice, which can improve the wettability as well as provide pseudocapacitance due to the redox reactions of amine groups. In addition, the symmetric supercapacitor assembled with N-ICNs in the operating voltage range of 0~2 V shows high energy density of 25.3 Wh·kg-1 at the power density of 900 W·kg-1, which are superior than the other carbon materials reported. And the capacitance retention can retain 98% after 10000 cycles. Therefore, the low-cost biomass-derived porous interconnected carbon material can be a promising electrode material for supercapacitors.
  • 加载中
    1. [1]

      Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Adv. Energy Mater. 2014, 4, 157.
       

    2. [2]

      Wu, Z.; Li, L.; Yan, J.; Zhang, X. Adv. Sci. 2017, 4, 1600382.  doi: 10.1002/advs.201600382

    3. [3]

      Li, T.; Zhao, J.; Li, Y.; Quan, Z.; Xu, J. Acta Chim. Sinica 2017, 75, 485.
       

    4. [4]

      Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. ACS Appl. Mater. Interfaces 2013, 5, 3408.  doi: 10.1021/am400457x

    5. [5]

      Su, S.; Lai, Q.; Liang, Y. Acta Chim. Sinica 2015, 73, 735.  doi: 10.3969/j.issn.0253-2409.2015.06.014
       

    6. [6]

      Hsu, Y. H.; Lai, C. C.; Ho, C. L.; Lo, C. T. Electrochim. Acta 2014, 127, 369.  doi: 10.1016/j.electacta.2014.02.060

    7. [7]

      Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Yu, A. J. Phys. Chem. C 2011, 115, 17612.  doi: 10.1021/jp205568v

    8. [8]

      Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X.; Xu, Z.; Wang, H.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Adv. Energy Mater. 2012, 2, 431.  doi: 10.1002/aenm.v2.4

    9. [9]

      Chen, W.; Zhang, H.; Huang, Y.; Wang, W. J. Mater. Chem. 2010, 20, 4773.  doi: 10.1039/c0jm00382d

    10. [10]

      Liu, D.; Yu, S.; Shen, Y.; Chen, H.; Shen, Z.; Zhao, S.; Fu, S.; Yu, Y.; Bao, B. Ind. Eng. Chem. Res. 2015, 54, 12570.  doi: 10.1021/acs.iecr.5b02507

    11. [11]

      Hu, Z.; Li, S.; Cheng, P.; Yu, W.; Li, R.; Shao, X.; Lin, W.; Yuan, D. J. Mater. Sci. 2016, 51, 2627.  doi: 10.1007/s10853-015-9576-x

    12. [12]

      Dou, S.; Huang, X.; Ma, Z.; Wu, J.; Wang, S. Nanotechnology 2015, 26, 045402.  doi: 10.1088/0957-4484/26/4/045402

    13. [13]

      Wang, C.; Qiu, F.; Deng, H.; Zhang, X.; He, P.; Zhou, H. Acta Chim. Sinica 2017, 75, 241.
       

    14. [14]

      Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557.
       

    15. [15]

      Dias, A.; Ciminelli, V. S. T. Ferroelectrics 2000, 241, 9.  doi: 10.1080/00150190008224969

    16. [16]

      Xu, J.; He, F.; Gai, S.; Zhang, S.; Li, L.; Yang, P. Nanoscale 2014, 6, 10887.  doi: 10.1039/C4NR02756F

    17. [17]

      Bello, A.; Manyala, N.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. RSC Adv. 2016, 6, 1800.  doi: 10.1039/C5RA21708C

    18. [18]

      Liu, B.; Zhou, X.; Chen, H.; Liu, Y.; Li, H. Electrochim. Acta 2016, 208, 55.  doi: 10.1016/j.electacta.2016.05.020

    19. [19]

      Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q.; Electrochem. Commun. 2008, 10, 1594.  doi: 10.1016/j.elecom.2008.08.022

    20. [20]

      Zhong, Y.; Xia, X.; Deng, S.; Zhan, J.; Fang, R.; Xia, Y.; Wang, X.; Zhang, Q.; Tu, J. Adv. Energy Mater. 2017, 201701110.
       

    21. [21]

      Cao, H.; Zhou, X.; Qin, Z.; Liu, Z. Carbon 2013, 56, 218.  doi: 10.1016/j.carbon.2013.01.005

    22. [22]

      Yang, J.; Jo, M. R.; Kang, M.; Huh, Y. S.; Jung, H.; Kang, Y.-M. Carbon 2014, 73, 106.  doi: 10.1016/j.carbon.2014.02.045

    23. [23]

      Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22, 5202.  doi: 10.1002/adma.201002647

    24. [24]

      Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Nano Energy 2015, 12, 141.  doi: 10.1016/j.nanoen.2014.12.014

    25. [25]

      Jiang, L.; Sheng, L.; Long, C.; Fan, Z. Nano Energy 2015, 11, 471.  doi: 10.1016/j.nanoen.2014.11.007

    26. [26]

      Xu, X.; Wang, M.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Energy Storage Mater. 2016, 5, 132.  doi: 10.1016/j.ensm.2016.07.002

    27. [27]

      Raymundo-Pinero, E.; Cadek, M.; Beguin, F. Adv. Funct. Mater. 2009, 19, 1032.  doi: 10.1002/adfm.v19:7

    28. [28]

      Feng, H.; Hu, H.; Dong, H.; Xiao, Y.; Cai, Y.; Lei, B.; Liu, Y.; Zheng, M. J. Power Sources 2016, 302, 164.  doi: 10.1016/j.jpowsour.2015.10.063

    29. [29]

      Liu, C.; Wang, J.; Li, J.; Zeng, M.; Luo, R.; Shen, J.; Sun, X.; Han, W.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 7194.  doi: 10.1021/acsami.6b02404

    30. [30]

      Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2016, 44, 216.
       

    31. [31]

      Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Wang, G.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J. Adv. Funct. Mater. 2016, 26, 111.  doi: 10.1002/adfm.201504004

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

Metrics
  • PDF Downloads(9)
  • Abstract views(2242)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return