Citation: Wang Jie, Chen Peng. Development and Applications of Bioorthogonal Cleavage Reactions[J]. Acta Chimica Sinica, ;2017, 75(12): 1173-1182. doi: 10.6023/A17090419 shu

Development and Applications of Bioorthogonal Cleavage Reactions

  • Corresponding author: Chen Peng, pengchen@pku.edu.cn
  • Received Date: 14 September 2017
    Available Online: 9 December 2017

    Fund Project: the National Natural Science Foundation of China 21432002the National Natural Science Foundation of China 21521003Project supported by the National Natural Science Foundation of China (Nos. 21521003, 21432002)

Figures(11)

  • Bioorthogonal reactions enable us to study and manipulate biological processes under living conditions. As widely used and powerful tools, biorthogonal reactions are largely defined as "ligation reactions" that are used for labeling, tracing and capturing biomolecules. Recently, an emerging collection of biorthogonal "bond-cleavage reactions" have been developed and applied for biological studies, especially in releasing, activating and manipulating biomolecules. In this review, we will first summarize the characteristics and applications of these biorthogonal cleavage reactions. We will then focus on introducing diverse applications of biorthogonal cleavage reactions, including activation of prodrugs, rescue of intracellular protein activity, engineering of cell surface, among other interesting applications. Finally, the outlook of future development and applications of biorthogonal cleavage reactions will be discussed.
  • 加载中
    1. [1]

      Lemieux, G. A.; de Graffenried, C. L.; Bertozzi, C. R. J. Am. Chem. Soc. 2003, 125, 4708.  doi: 10.1021/ja029013y

    2. [2]

      Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.  doi: 10.1038/nchembio0605-13

    3. [3]

      Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. ACS Chem. Biol. 2014, 9, 592.  doi: 10.1021/cb400828a

    4. [4]

      Li, J.; Wang, J.; Chen, P. Acta Chim. Sinica 2012, 70, 1439.  doi: 10.3866/PKU.WHXB201203142
       

    5. [5]

      Yang, M. Y.; Chen, P. Acta Chim. Sinica 2015, 73, 783.  doi: 10.3866/PKU.WHXB201502062
       

    6. [6]

      Azagarsamy, M. A.; Anseth, K. S. ACS Macro Lett. 2013, 2, 5.  doi: 10.1021/mz300585q

    7. [7]

      Rogozhnikov, D.; O'Brien, P. J.; Elahipanah, S.; Yousaf , M. N. 2016, 6, 39806.

    8. [8]

      Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Angew. Chem., Int. Ed. 2012, 51, 11836.  doi: 10.1002/anie.201206703

    9. [9]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    10. [10]

      Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. Science 2008, 320, 664.  doi: 10.1126/science.1155106

    11. [11]

      Hao, Z.; Hong, S.; Chen, X.; Chen, P. R. Acc. Chem. Res. 2011, 44, 742.  doi: 10.1021/ar200067r

    12. [12]

      Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441.  doi: 10.1039/b200777k

    13. [13]

      Cruz, F. G.; Koh, J. T.; Link, K. H. J. Am. Chem. Soc. 2000, 122, 8777.  doi: 10.1021/ja001804h

    14. [14]

      Lenox, H. J.; McCoy, C. P.; Sheppard, T. L. Org. Lett. 2001, 3, 2415.  doi: 10.1021/ol016255e

    15. [15]

      Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.  doi: 10.1021/ja040175z

    16. [16]

      Chen, P. R.; Groff, D.; Guo, J.; Ou, W.; Cellitti, S.; Geierstanger, B. H.; Schultz, P. G. Angew. Chem., Int. Ed. 2009, 48, 4052.  doi: 10.1002/anie.v48:22

    17. [17]

      Zhao, J.; Lin, S.; Huang, Y.; Zhao, J.; Chen, P. R. J. Am. Chem. Soc. 2013, 135, 7410.  doi: 10.1021/ja4013535

    18. [18]

      Arbely, E.; Torres-Kolbus, J.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2012, 134, 11912.  doi: 10.1021/ja3046958

    19. [19]

      Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8483.  doi: 10.1073/pnas.1114551109

    20. [20]

      Liu, J.; Yang, D.; Minemoto, Y.; Leitges, M.; Rosner, M. R.; Lin, A. Mol. Cell 2006, 21, 467.  doi: 10.1016/j.molcel.2005.12.020

    21. [21]

      Chen, X.; Tang, S.; Zheng, J.; Zhao, R.; Wang, Z.; Shao, W.; Chang, H.; Cheng, J; Zhao, H.; Liu, L.; Qi, H. Nat. Commun. 2015, 6, 7220.  doi: 10.1038/ncomms8220

    22. [22]

      Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.  doi: 10.1021/ja202799r

    23. [23]

      Streu, C.; Meggers, E. Angew. Chem., Int. Ed. 2006, 45, 5645.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Sasmal, P. K.; Carregalromero, S.; Parak, W. J.; Meggers, E. Organometallics 2012, 31, 5968.  doi: 10.1021/om3001668

    25. [25]

      V lker, T.; Meggers, E. ChemBiochem 2017, 18, 1083.  doi: 10.1002/cbic.v18.12

    26. [26]

      Garner, A. L.; Song, F.; Koide, K. J. Am. Chem. Soc. 2009, 131, 5163.  doi: 10.1021/ja808385a

    27. [27]

      Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sánchez-Martín, R. M.; Bradley, M. Nat. Chem. 2011, 3, 239.

    28. [28]

      Li, J.; Yu, J.; Zhao, J.; Wang, J.; Zheng, S.; Lin, S.; Chen, L.; Yang, M.; Jia, S.; Zhang, X.; Chen, P. R. Nat. Chem. 2014, 6, 352.  doi: 10.1038/nchem.1887

    29. [29]

      Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N. O.; Unciti-Broceta, A. Nat. Commun. 2014, 5, 3277.

    30. [30]

      Weiss, J. T.; Dawson, J. C.; Fraser, C.; Rybski, W.; Torres-Sánchez, C.; Bradley, M.; Patton, E. E.; Carragher, N. O.; Unciti-Broceta, A. J. Med. Chem. 2014, 57, 5395.  doi: 10.1021/jm500531z

    31. [31]

      Santra, M.; Ko, S.-K.; Shin, I.; Ahn, K. H. Chem. Commun. 2010, 46, 3964.  doi: 10.1039/c001922d

    32. [32]

      Kislukhin, A. A.; Hong, V. P.; Breitenkamp, K. E.; Finn, M. G. Bioconjugate Chem. 2013, 24, 684.  doi: 10.1021/bc300672b

    33. [33]

      Pérez-López, A. M.; Rubio-Ruiz, B.; Sebastián, V.; Hamilton, L.; Adam, C.; Bray, T. L.; Irusta, S.; Brennan, P. M.; Lloyd-Jones, G.; Sieger, D.; Santamaría, J.; Unciti-Broceta, A. Angew. Chem., Int. Ed. 2017, DOI: 10.1002/anie.201705609

    34. [34]

      Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.  doi: 10.1021/ja8053805

    35. [35]

      Versteegen, R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.; Robillard, M. S. Angew. Chem., Int. Ed. 2013, 52, 14112.  doi: 10.1002/anie.201305969

    36. [36]

      Li, J.; Jia, S.; Chen, P. R. Nat. Chem. Biol. 2014, 10, 1003.  doi: 10.1038/nchembio.1656

    37. [37]

      Kim, J.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2015, 54, 15777.  doi: 10.1002/anie.201508861

    38. [38]

      Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am. Chem. Soc. 2016, 138, 7256.  doi: 10.1021/jacs.6b03780

    39. [39]

      Matikonda, S. S.; Orsi, D. L.; Staudacher, V.; Jenkins, I. A.; Fiedler, F.; Chen, J.; Gamble, A. B. Chem. Sci. 2015, 6, 1212.  doi: 10.1039/C4SC02574A

    40. [40]

      Ge, Y.; Fan, X.; Chen, P. R. Chem. Sci. 2016, 7, 7055.  doi: 10.1039/C6SC02615J

    41. [41]

      Luo, J.; Liu, Q.; Morihiro, K.; Deiters, A. Nat. Chem. 2016, 8, 1027.  doi: 10.1038/nchem.2573

    42. [42]

      Pawlak, J. B.; Gential, G. P. P.; Ruckwardt, T. J.; Bremmers, J. S.; Meeuwenoord, N. J.; Ossendorp, F. A.; Overkleeft, H. S.; Filippov, D. V.; van Kasteren, S. I. Angew. Chem., Int. Ed. 2015, 54, 5628.  doi: 10.1002/anie.201500301

    43. [43]

      Wang, J.; Zheng, S.; Liu, Y.; Zhang, Z.; Lin, Z.; Li, J.; Zhang, G.; Wang, X.; Li, J.; Chen, P. R. J. Am. Chem. Soc. 2016, 138, 15118.  doi: 10.1021/jacs.6b08933

    44. [44]

      Wu, H.; Alexander, S. C.; Jin, S.; Devaraj, N. K. J. Am. Chem. Soc. 2016, 138, 11429.  doi: 10.1021/jacs.6b01625

    45. [45]

      Jiménez-Moreno, E.; Guo, Z.; Oliveira, B. L.; Albuquerque, I. S.; Kitowski, A.; Guerreiro, A.; Boutureira, O.; Rodrigues, T.; Jiménez-Osés, G.; Bernardes, G. J. L. Angew. Chem., Int. Ed. 2017, 56, 243.  doi: 10.1002/anie.v56.1

    46. [46]

      Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Central Science 2016, 2, 325.  doi: 10.1021/acscentsci.6b00024

    47. [47]

      Miller, M. A.; Askevold, B.; Mikula, H.; Kohler, R. H.; Pirovich, D.; Weissleder, R. Nat. Commun. 2017, 8, 15906.  doi: 10.1038/ncomms15906

    48. [48]

      Li, B.; Liu, P.; Wu, H.; Xie, X.; Chen, Z.; Zeng, F.; Wu, S. Biomaterials 2017, 138, 57.  doi: 10.1016/j.biomaterials.2017.05.036

    49. [49]

      Doerr, A. Nat. Meth. 2014, 11, 472.

    50. [50]

      Anon. Nat. Meth. 2015, 12, 16.

    51. [51]

      He, C. Nat. Sci. Rev. 2015, 2, 250.  doi: 10.1093/nsr/nwv030

    52. [52]

      Dumas, A.; Couvreur, P. Chem. Sci. 2015, 6, 2153.  doi: 10.1039/C5SC00070J

    53. [53]

      Rossin, R.; van Duijnhoven, S. M. J.; ten Hoeve, W.; Janssen, H. M.; Kleijn, L. H. J.; Hoeben, F. J. M.; Versteegen, R. M.; Robillard, M. S. Bioconjugate Chem. 2016, 27, 1697.  doi: 10.1021/acs.bioconjchem.6b00231

    54. [54]

      Khan, I.; Agris, P. F.; Yigit, M. V.; Royzen, M. Chem. Commun. 2016, 52, 6174.  doi: 10.1039/C6CC01024E

    55. [55]

      Mejia Oneto, J. M.; Khan, I.; Seebald, L.; Royzen, M. ACS Central Science 2016, 2, 476.  doi: 10.1021/acscentsci.6b00150

    56. [56]

      Heffern, M. C.; Park, H. M.; Au-Yeung, H. Y.; Van de Bittner, G. C.; Ackerman, C. M.; Stahl, A.; Chang, C. J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 14219.  doi: 10.1073/pnas.1613628113

    57. [57]

      Zorn, J. A.; Wells, J. A. Nat. Chem. Biol. 2010, 6, 179.  doi: 10.1038/nchembio.318

    58. [58]

      Qiao, Y.; Molina, H.; Pandey, A.; Zhang, J.; Cole, P. A. Science 2006, 311, 1293.  doi: 10.1126/science.1122224

    59. [59]

      Schwartz, E. C.; Saez, L.; Young, M. W.; Muir, T. W. Nat. Chem. Biol. 2007, 3, 50.  doi: 10.1038/nchembio832

    60. [60]

      Tsai, Y.-H.; Essig, S.; James, J. R.; Lang, K.; Chin, J. W. Nat. Chem. 2015, 7, 554.  doi: 10.1038/nchem.2253

    61. [61]

      Tian, T.; Song, Y.; Wang, J.; Fu, B.; He, Z.; Xu, X.; Li, A.; Zhou, X.; Wang, S.; Zhou, X. J. Am. Chem. Soc. 2016, 138, 955.  doi: 10.1021/jacs.5b11532

    62. [62]

      Qian, K.; Zheng, Y. G. Nat. Chem. Biol. 2014, 10, 328.  doi: 10.1038/nchembio.1507

    63. [63]

      Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S. C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P. R. Angew. Chem., Int. Ed. 2016, 55, 14046.  doi: 10.1002/anie.v55.45

    64. [64]

      Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.; Chen, P. R. Angew. Chem., Int. Ed. 2015, 54, 5364.  doi: 10.1002/anie.201409145

    65. [65]

      Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.  doi: 10.1038/nchembio.2406

    66. [66]

      Xie, X.; Li, X.-M.; Qin, F.; Lin, J.; Zhang, G.; Zhao, J.; Bao, X.; Zhu, R.; Song, H.; Li, X. D.; Chen, P. R. J. Am. Chem. Soc. 2017, 139, 6522.  doi: 10.1021/jacs.7b01431

    67. [67]

      Lin, S.; He, D.; Long, T.; Zhang, S.; Meng, R.; Chen, P. R. J. Am. Chem. Soc. 2014, 136, 11860.  doi: 10.1021/ja504371w

    68. [68]

      Yang, Y.; Song, H.; He, D.; Zhang, S.; Dai, S.; Lin, S.; Meng, R.; Wang, C.; Chen, P. R. Nat. Commun. 2016, 7, 12299.  doi: 10.1038/ncomms12299

    69. [69]

      Zhang, S.; He, D.; Lin, Z.; Yang, Y.; Song, H.; Chen, P. R. Acc. Chem. Res. 2017, 50, 1184.  doi: 10.1021/acs.accounts.6b00647

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    3. [3]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    4. [4]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    5. [5]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    6. [6]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(501)
  • Abstract views(13304)
  • HTML views(4718)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return