Citation: Wang Jie, Chen Peng. Development and Applications of Bioorthogonal Cleavage Reactions[J]. Acta Chimica Sinica, ;2017, 75(12): 1173-1182. doi: 10.6023/A17090419 shu

Development and Applications of Bioorthogonal Cleavage Reactions

  • Corresponding author: Chen Peng, pengchen@pku.edu.cn
  • Received Date: 14 September 2017
    Available Online: 9 December 2017

    Fund Project: the National Natural Science Foundation of China 21432002the National Natural Science Foundation of China 21521003Project supported by the National Natural Science Foundation of China (Nos. 21521003, 21432002)

Figures(11)

  • Bioorthogonal reactions enable us to study and manipulate biological processes under living conditions. As widely used and powerful tools, biorthogonal reactions are largely defined as "ligation reactions" that are used for labeling, tracing and capturing biomolecules. Recently, an emerging collection of biorthogonal "bond-cleavage reactions" have been developed and applied for biological studies, especially in releasing, activating and manipulating biomolecules. In this review, we will first summarize the characteristics and applications of these biorthogonal cleavage reactions. We will then focus on introducing diverse applications of biorthogonal cleavage reactions, including activation of prodrugs, rescue of intracellular protein activity, engineering of cell surface, among other interesting applications. Finally, the outlook of future development and applications of biorthogonal cleavage reactions will be discussed.
  • 加载中
    1. [1]

      Lemieux, G. A.; de Graffenried, C. L.; Bertozzi, C. R. J. Am. Chem. Soc. 2003, 125, 4708.  doi: 10.1021/ja029013y

    2. [2]

      Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.  doi: 10.1038/nchembio0605-13

    3. [3]

      Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. ACS Chem. Biol. 2014, 9, 592.  doi: 10.1021/cb400828a

    4. [4]

      Li, J.; Wang, J.; Chen, P. Acta Chim. Sinica 2012, 70, 1439.  doi: 10.3866/PKU.WHXB201203142
       

    5. [5]

      Yang, M. Y.; Chen, P. Acta Chim. Sinica 2015, 73, 783.  doi: 10.3866/PKU.WHXB201502062
       

    6. [6]

      Azagarsamy, M. A.; Anseth, K. S. ACS Macro Lett. 2013, 2, 5.  doi: 10.1021/mz300585q

    7. [7]

      Rogozhnikov, D.; O'Brien, P. J.; Elahipanah, S.; Yousaf , M. N. 2016, 6, 39806.

    8. [8]

      Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Angew. Chem., Int. Ed. 2012, 51, 11836.  doi: 10.1002/anie.201206703

    9. [9]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    10. [10]

      Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. Science 2008, 320, 664.  doi: 10.1126/science.1155106

    11. [11]

      Hao, Z.; Hong, S.; Chen, X.; Chen, P. R. Acc. Chem. Res. 2011, 44, 742.  doi: 10.1021/ar200067r

    12. [12]

      Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441.  doi: 10.1039/b200777k

    13. [13]

      Cruz, F. G.; Koh, J. T.; Link, K. H. J. Am. Chem. Soc. 2000, 122, 8777.  doi: 10.1021/ja001804h

    14. [14]

      Lenox, H. J.; McCoy, C. P.; Sheppard, T. L. Org. Lett. 2001, 3, 2415.  doi: 10.1021/ol016255e

    15. [15]

      Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.  doi: 10.1021/ja040175z

    16. [16]

      Chen, P. R.; Groff, D.; Guo, J.; Ou, W.; Cellitti, S.; Geierstanger, B. H.; Schultz, P. G. Angew. Chem., Int. Ed. 2009, 48, 4052.  doi: 10.1002/anie.v48:22

    17. [17]

      Zhao, J.; Lin, S.; Huang, Y.; Zhao, J.; Chen, P. R. J. Am. Chem. Soc. 2013, 135, 7410.  doi: 10.1021/ja4013535

    18. [18]

      Arbely, E.; Torres-Kolbus, J.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2012, 134, 11912.  doi: 10.1021/ja3046958

    19. [19]

      Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8483.  doi: 10.1073/pnas.1114551109

    20. [20]

      Liu, J.; Yang, D.; Minemoto, Y.; Leitges, M.; Rosner, M. R.; Lin, A. Mol. Cell 2006, 21, 467.  doi: 10.1016/j.molcel.2005.12.020

    21. [21]

      Chen, X.; Tang, S.; Zheng, J.; Zhao, R.; Wang, Z.; Shao, W.; Chang, H.; Cheng, J; Zhao, H.; Liu, L.; Qi, H. Nat. Commun. 2015, 6, 7220.  doi: 10.1038/ncomms8220

    22. [22]

      Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.  doi: 10.1021/ja202799r

    23. [23]

      Streu, C.; Meggers, E. Angew. Chem., Int. Ed. 2006, 45, 5645.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Sasmal, P. K.; Carregalromero, S.; Parak, W. J.; Meggers, E. Organometallics 2012, 31, 5968.  doi: 10.1021/om3001668

    25. [25]

      V lker, T.; Meggers, E. ChemBiochem 2017, 18, 1083.  doi: 10.1002/cbic.v18.12

    26. [26]

      Garner, A. L.; Song, F.; Koide, K. J. Am. Chem. Soc. 2009, 131, 5163.  doi: 10.1021/ja808385a

    27. [27]

      Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sánchez-Martín, R. M.; Bradley, M. Nat. Chem. 2011, 3, 239.

    28. [28]

      Li, J.; Yu, J.; Zhao, J.; Wang, J.; Zheng, S.; Lin, S.; Chen, L.; Yang, M.; Jia, S.; Zhang, X.; Chen, P. R. Nat. Chem. 2014, 6, 352.  doi: 10.1038/nchem.1887

    29. [29]

      Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N. O.; Unciti-Broceta, A. Nat. Commun. 2014, 5, 3277.

    30. [30]

      Weiss, J. T.; Dawson, J. C.; Fraser, C.; Rybski, W.; Torres-Sánchez, C.; Bradley, M.; Patton, E. E.; Carragher, N. O.; Unciti-Broceta, A. J. Med. Chem. 2014, 57, 5395.  doi: 10.1021/jm500531z

    31. [31]

      Santra, M.; Ko, S.-K.; Shin, I.; Ahn, K. H. Chem. Commun. 2010, 46, 3964.  doi: 10.1039/c001922d

    32. [32]

      Kislukhin, A. A.; Hong, V. P.; Breitenkamp, K. E.; Finn, M. G. Bioconjugate Chem. 2013, 24, 684.  doi: 10.1021/bc300672b

    33. [33]

      Pérez-López, A. M.; Rubio-Ruiz, B.; Sebastián, V.; Hamilton, L.; Adam, C.; Bray, T. L.; Irusta, S.; Brennan, P. M.; Lloyd-Jones, G.; Sieger, D.; Santamaría, J.; Unciti-Broceta, A. Angew. Chem., Int. Ed. 2017, DOI: 10.1002/anie.201705609

    34. [34]

      Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.  doi: 10.1021/ja8053805

    35. [35]

      Versteegen, R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.; Robillard, M. S. Angew. Chem., Int. Ed. 2013, 52, 14112.  doi: 10.1002/anie.201305969

    36. [36]

      Li, J.; Jia, S.; Chen, P. R. Nat. Chem. Biol. 2014, 10, 1003.  doi: 10.1038/nchembio.1656

    37. [37]

      Kim, J.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2015, 54, 15777.  doi: 10.1002/anie.201508861

    38. [38]

      Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am. Chem. Soc. 2016, 138, 7256.  doi: 10.1021/jacs.6b03780

    39. [39]

      Matikonda, S. S.; Orsi, D. L.; Staudacher, V.; Jenkins, I. A.; Fiedler, F.; Chen, J.; Gamble, A. B. Chem. Sci. 2015, 6, 1212.  doi: 10.1039/C4SC02574A

    40. [40]

      Ge, Y.; Fan, X.; Chen, P. R. Chem. Sci. 2016, 7, 7055.  doi: 10.1039/C6SC02615J

    41. [41]

      Luo, J.; Liu, Q.; Morihiro, K.; Deiters, A. Nat. Chem. 2016, 8, 1027.  doi: 10.1038/nchem.2573

    42. [42]

      Pawlak, J. B.; Gential, G. P. P.; Ruckwardt, T. J.; Bremmers, J. S.; Meeuwenoord, N. J.; Ossendorp, F. A.; Overkleeft, H. S.; Filippov, D. V.; van Kasteren, S. I. Angew. Chem., Int. Ed. 2015, 54, 5628.  doi: 10.1002/anie.201500301

    43. [43]

      Wang, J.; Zheng, S.; Liu, Y.; Zhang, Z.; Lin, Z.; Li, J.; Zhang, G.; Wang, X.; Li, J.; Chen, P. R. J. Am. Chem. Soc. 2016, 138, 15118.  doi: 10.1021/jacs.6b08933

    44. [44]

      Wu, H.; Alexander, S. C.; Jin, S.; Devaraj, N. K. J. Am. Chem. Soc. 2016, 138, 11429.  doi: 10.1021/jacs.6b01625

    45. [45]

      Jiménez-Moreno, E.; Guo, Z.; Oliveira, B. L.; Albuquerque, I. S.; Kitowski, A.; Guerreiro, A.; Boutureira, O.; Rodrigues, T.; Jiménez-Osés, G.; Bernardes, G. J. L. Angew. Chem., Int. Ed. 2017, 56, 243.  doi: 10.1002/anie.v56.1

    46. [46]

      Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Central Science 2016, 2, 325.  doi: 10.1021/acscentsci.6b00024

    47. [47]

      Miller, M. A.; Askevold, B.; Mikula, H.; Kohler, R. H.; Pirovich, D.; Weissleder, R. Nat. Commun. 2017, 8, 15906.  doi: 10.1038/ncomms15906

    48. [48]

      Li, B.; Liu, P.; Wu, H.; Xie, X.; Chen, Z.; Zeng, F.; Wu, S. Biomaterials 2017, 138, 57.  doi: 10.1016/j.biomaterials.2017.05.036

    49. [49]

      Doerr, A. Nat. Meth. 2014, 11, 472.

    50. [50]

      Anon. Nat. Meth. 2015, 12, 16.

    51. [51]

      He, C. Nat. Sci. Rev. 2015, 2, 250.  doi: 10.1093/nsr/nwv030

    52. [52]

      Dumas, A.; Couvreur, P. Chem. Sci. 2015, 6, 2153.  doi: 10.1039/C5SC00070J

    53. [53]

      Rossin, R.; van Duijnhoven, S. M. J.; ten Hoeve, W.; Janssen, H. M.; Kleijn, L. H. J.; Hoeben, F. J. M.; Versteegen, R. M.; Robillard, M. S. Bioconjugate Chem. 2016, 27, 1697.  doi: 10.1021/acs.bioconjchem.6b00231

    54. [54]

      Khan, I.; Agris, P. F.; Yigit, M. V.; Royzen, M. Chem. Commun. 2016, 52, 6174.  doi: 10.1039/C6CC01024E

    55. [55]

      Mejia Oneto, J. M.; Khan, I.; Seebald, L.; Royzen, M. ACS Central Science 2016, 2, 476.  doi: 10.1021/acscentsci.6b00150

    56. [56]

      Heffern, M. C.; Park, H. M.; Au-Yeung, H. Y.; Van de Bittner, G. C.; Ackerman, C. M.; Stahl, A.; Chang, C. J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 14219.  doi: 10.1073/pnas.1613628113

    57. [57]

      Zorn, J. A.; Wells, J. A. Nat. Chem. Biol. 2010, 6, 179.  doi: 10.1038/nchembio.318

    58. [58]

      Qiao, Y.; Molina, H.; Pandey, A.; Zhang, J.; Cole, P. A. Science 2006, 311, 1293.  doi: 10.1126/science.1122224

    59. [59]

      Schwartz, E. C.; Saez, L.; Young, M. W.; Muir, T. W. Nat. Chem. Biol. 2007, 3, 50.  doi: 10.1038/nchembio832

    60. [60]

      Tsai, Y.-H.; Essig, S.; James, J. R.; Lang, K.; Chin, J. W. Nat. Chem. 2015, 7, 554.  doi: 10.1038/nchem.2253

    61. [61]

      Tian, T.; Song, Y.; Wang, J.; Fu, B.; He, Z.; Xu, X.; Li, A.; Zhou, X.; Wang, S.; Zhou, X. J. Am. Chem. Soc. 2016, 138, 955.  doi: 10.1021/jacs.5b11532

    62. [62]

      Qian, K.; Zheng, Y. G. Nat. Chem. Biol. 2014, 10, 328.  doi: 10.1038/nchembio.1507

    63. [63]

      Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S. C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P. R. Angew. Chem., Int. Ed. 2016, 55, 14046.  doi: 10.1002/anie.v55.45

    64. [64]

      Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.; Chen, P. R. Angew. Chem., Int. Ed. 2015, 54, 5364.  doi: 10.1002/anie.201409145

    65. [65]

      Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.  doi: 10.1038/nchembio.2406

    66. [66]

      Xie, X.; Li, X.-M.; Qin, F.; Lin, J.; Zhang, G.; Zhao, J.; Bao, X.; Zhu, R.; Song, H.; Li, X. D.; Chen, P. R. J. Am. Chem. Soc. 2017, 139, 6522.  doi: 10.1021/jacs.7b01431

    67. [67]

      Lin, S.; He, D.; Long, T.; Zhang, S.; Meng, R.; Chen, P. R. J. Am. Chem. Soc. 2014, 136, 11860.  doi: 10.1021/ja504371w

    68. [68]

      Yang, Y.; Song, H.; He, D.; Zhang, S.; Dai, S.; Lin, S.; Meng, R.; Wang, C.; Chen, P. R. Nat. Commun. 2016, 7, 12299.  doi: 10.1038/ncomms12299

    69. [69]

      Zhang, S.; He, D.; Lin, Z.; Yang, Y.; Song, H.; Chen, P. R. Acc. Chem. Res. 2017, 50, 1184.  doi: 10.1021/acs.accounts.6b00647

  • 加载中
    1. [1]

      Zhi Zheng Feiyang Liu Junlong Zhao . D-Amino Acids and Mirror-Image Proteins. University Chemistry, 2026, 41(2): 353-359. doi: 10.12461/PKU.DXHX202505017

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    4. [4]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    5. [5]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    6. [6]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      Yuanqingshan Yuan Rui Li Weiguang Zhao . The Science behind Milky White Lamb Soup: Exploring Colloidal Chemistry in Traditional Cooking. University Chemistry, 2026, 41(2): 314-322. doi: 10.12461/PKU.DXHX202503017

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Jingxuan Zhang Weihao Jiang Siyuan Zhang Hongye Tian Ziye Huang Lin Huang Qikun Wu Jing Yang Yibin Jiang Cheng Wang . Automation and AI-Assisted Investigation of the Chemical Reactivity of Sulfosalicylic Acid. University Chemistry, 2026, 41(1): 332-345. doi: 10.12461/PKU.DXHX202505108

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    14. [14]

      Xipu He Wengui Duan Guishan Lin . Reform and Practice of Organic Chemistry Teaching for Non-Chemistry Major under the Four New Construction: Taking the Organic Chemistry Course Reform of Biological Science Major at Guangxi University as an Example. University Chemistry, 2025, 40(7): 42-47. doi: 10.12461/PKU.DXHX202408021

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    17. [17]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    18. [18]

      Xue Zhao Guoyu Jiang Haixia Wu . Teaching Practice and Reform of Analytical Chemistry for Non-Chemistry Majors. University Chemistry, 2026, 41(2): 123-130. doi: 10.12461/PKU.DXHX202503083

    19. [19]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    20. [20]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

Metrics
  • PDF Downloads(547)
  • Abstract views(16796)
  • HTML views(5514)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return