Citation: Wang Jie, Chen Peng. Development and Applications of Bioorthogonal Cleavage Reactions[J]. Acta Chimica Sinica, ;2017, 75(12): 1173-1182. doi: 10.6023/A17090419 shu

Development and Applications of Bioorthogonal Cleavage Reactions

  • Corresponding author: Chen Peng, pengchen@pku.edu.cn
  • Received Date: 14 September 2017
    Available Online: 9 December 2017

    Fund Project: the National Natural Science Foundation of China 21432002the National Natural Science Foundation of China 21521003Project supported by the National Natural Science Foundation of China (Nos. 21521003, 21432002)

Figures(11)

  • Bioorthogonal reactions enable us to study and manipulate biological processes under living conditions. As widely used and powerful tools, biorthogonal reactions are largely defined as "ligation reactions" that are used for labeling, tracing and capturing biomolecules. Recently, an emerging collection of biorthogonal "bond-cleavage reactions" have been developed and applied for biological studies, especially in releasing, activating and manipulating biomolecules. In this review, we will first summarize the characteristics and applications of these biorthogonal cleavage reactions. We will then focus on introducing diverse applications of biorthogonal cleavage reactions, including activation of prodrugs, rescue of intracellular protein activity, engineering of cell surface, among other interesting applications. Finally, the outlook of future development and applications of biorthogonal cleavage reactions will be discussed.
  • 加载中
    1. [1]

      Lemieux, G. A.; de Graffenried, C. L.; Bertozzi, C. R. J. Am. Chem. Soc. 2003, 125, 4708.  doi: 10.1021/ja029013y

    2. [2]

      Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.  doi: 10.1038/nchembio0605-13

    3. [3]

      Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. ACS Chem. Biol. 2014, 9, 592.  doi: 10.1021/cb400828a

    4. [4]

      Li, J.; Wang, J.; Chen, P. Acta Chim. Sinica 2012, 70, 1439.  doi: 10.3866/PKU.WHXB201203142
       

    5. [5]

      Yang, M. Y.; Chen, P. Acta Chim. Sinica 2015, 73, 783.  doi: 10.3866/PKU.WHXB201502062
       

    6. [6]

      Azagarsamy, M. A.; Anseth, K. S. ACS Macro Lett. 2013, 2, 5.  doi: 10.1021/mz300585q

    7. [7]

      Rogozhnikov, D.; O'Brien, P. J.; Elahipanah, S.; Yousaf , M. N. 2016, 6, 39806.

    8. [8]

      Koo, H.; Lee, S.; Na, J. H.; Kim, S. H.; Hahn, S. K.; Choi, K.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Angew. Chem., Int. Ed. 2012, 51, 11836.  doi: 10.1002/anie.201206703

    9. [9]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    10. [10]

      Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R. Science 2008, 320, 664.  doi: 10.1126/science.1155106

    11. [11]

      Hao, Z.; Hong, S.; Chen, X.; Chen, P. R. Acc. Chem. Res. 2011, 44, 742.  doi: 10.1021/ar200067r

    12. [12]

      Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441.  doi: 10.1039/b200777k

    13. [13]

      Cruz, F. G.; Koh, J. T.; Link, K. H. J. Am. Chem. Soc. 2000, 122, 8777.  doi: 10.1021/ja001804h

    14. [14]

      Lenox, H. J.; McCoy, C. P.; Sheppard, T. L. Org. Lett. 2001, 3, 2415.  doi: 10.1021/ol016255e

    15. [15]

      Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.  doi: 10.1021/ja040175z

    16. [16]

      Chen, P. R.; Groff, D.; Guo, J.; Ou, W.; Cellitti, S.; Geierstanger, B. H.; Schultz, P. G. Angew. Chem., Int. Ed. 2009, 48, 4052.  doi: 10.1002/anie.v48:22

    17. [17]

      Zhao, J.; Lin, S.; Huang, Y.; Zhao, J.; Chen, P. R. J. Am. Chem. Soc. 2013, 135, 7410.  doi: 10.1021/ja4013535

    18. [18]

      Arbely, E.; Torres-Kolbus, J.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2012, 134, 11912.  doi: 10.1021/ja3046958

    19. [19]

      Jayakumar, M. K. G.; Idris, N. M.; Zhang, Y. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8483.  doi: 10.1073/pnas.1114551109

    20. [20]

      Liu, J.; Yang, D.; Minemoto, Y.; Leitges, M.; Rosner, M. R.; Lin, A. Mol. Cell 2006, 21, 467.  doi: 10.1016/j.molcel.2005.12.020

    21. [21]

      Chen, X.; Tang, S.; Zheng, J.; Zhao, R.; Wang, Z.; Shao, W.; Chang, H.; Cheng, J; Zhao, H.; Liu, L.; Qi, H. Nat. Commun. 2015, 6, 7220.  doi: 10.1038/ncomms8220

    22. [22]

      Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.  doi: 10.1021/ja202799r

    23. [23]

      Streu, C.; Meggers, E. Angew. Chem., Int. Ed. 2006, 45, 5645.  doi: 10.1002/(ISSN)1521-3773

    24. [24]

      Sasmal, P. K.; Carregalromero, S.; Parak, W. J.; Meggers, E. Organometallics 2012, 31, 5968.  doi: 10.1021/om3001668

    25. [25]

      V lker, T.; Meggers, E. ChemBiochem 2017, 18, 1083.  doi: 10.1002/cbic.v18.12

    26. [26]

      Garner, A. L.; Song, F.; Koide, K. J. Am. Chem. Soc. 2009, 131, 5163.  doi: 10.1021/ja808385a

    27. [27]

      Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sánchez-Martín, R. M.; Bradley, M. Nat. Chem. 2011, 3, 239.

    28. [28]

      Li, J.; Yu, J.; Zhao, J.; Wang, J.; Zheng, S.; Lin, S.; Chen, L.; Yang, M.; Jia, S.; Zhang, X.; Chen, P. R. Nat. Chem. 2014, 6, 352.  doi: 10.1038/nchem.1887

    29. [29]

      Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N. O.; Unciti-Broceta, A. Nat. Commun. 2014, 5, 3277.

    30. [30]

      Weiss, J. T.; Dawson, J. C.; Fraser, C.; Rybski, W.; Torres-Sánchez, C.; Bradley, M.; Patton, E. E.; Carragher, N. O.; Unciti-Broceta, A. J. Med. Chem. 2014, 57, 5395.  doi: 10.1021/jm500531z

    31. [31]

      Santra, M.; Ko, S.-K.; Shin, I.; Ahn, K. H. Chem. Commun. 2010, 46, 3964.  doi: 10.1039/c001922d

    32. [32]

      Kislukhin, A. A.; Hong, V. P.; Breitenkamp, K. E.; Finn, M. G. Bioconjugate Chem. 2013, 24, 684.  doi: 10.1021/bc300672b

    33. [33]

      Pérez-López, A. M.; Rubio-Ruiz, B.; Sebastián, V.; Hamilton, L.; Adam, C.; Bray, T. L.; Irusta, S.; Brennan, P. M.; Lloyd-Jones, G.; Sieger, D.; Santamaría, J.; Unciti-Broceta, A. Angew. Chem., Int. Ed. 2017, DOI: 10.1002/anie.201705609

    34. [34]

      Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.  doi: 10.1021/ja8053805

    35. [35]

      Versteegen, R. M.; Rossin, R.; ten Hoeve, W.; Janssen, H. M.; Robillard, M. S. Angew. Chem., Int. Ed. 2013, 52, 14112.  doi: 10.1002/anie.201305969

    36. [36]

      Li, J.; Jia, S.; Chen, P. R. Nat. Chem. Biol. 2014, 10, 1003.  doi: 10.1038/nchembio.1656

    37. [37]

      Kim, J.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2015, 54, 15777.  doi: 10.1002/anie.201508861

    38. [38]

      Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am. Chem. Soc. 2016, 138, 7256.  doi: 10.1021/jacs.6b03780

    39. [39]

      Matikonda, S. S.; Orsi, D. L.; Staudacher, V.; Jenkins, I. A.; Fiedler, F.; Chen, J.; Gamble, A. B. Chem. Sci. 2015, 6, 1212.  doi: 10.1039/C4SC02574A

    40. [40]

      Ge, Y.; Fan, X.; Chen, P. R. Chem. Sci. 2016, 7, 7055.  doi: 10.1039/C6SC02615J

    41. [41]

      Luo, J.; Liu, Q.; Morihiro, K.; Deiters, A. Nat. Chem. 2016, 8, 1027.  doi: 10.1038/nchem.2573

    42. [42]

      Pawlak, J. B.; Gential, G. P. P.; Ruckwardt, T. J.; Bremmers, J. S.; Meeuwenoord, N. J.; Ossendorp, F. A.; Overkleeft, H. S.; Filippov, D. V.; van Kasteren, S. I. Angew. Chem., Int. Ed. 2015, 54, 5628.  doi: 10.1002/anie.201500301

    43. [43]

      Wang, J.; Zheng, S.; Liu, Y.; Zhang, Z.; Lin, Z.; Li, J.; Zhang, G.; Wang, X.; Li, J.; Chen, P. R. J. Am. Chem. Soc. 2016, 138, 15118.  doi: 10.1021/jacs.6b08933

    44. [44]

      Wu, H.; Alexander, S. C.; Jin, S.; Devaraj, N. K. J. Am. Chem. Soc. 2016, 138, 11429.  doi: 10.1021/jacs.6b01625

    45. [45]

      Jiménez-Moreno, E.; Guo, Z.; Oliveira, B. L.; Albuquerque, I. S.; Kitowski, A.; Guerreiro, A.; Boutureira, O.; Rodrigues, T.; Jiménez-Osés, G.; Bernardes, G. J. L. Angew. Chem., Int. Ed. 2017, 56, 243.  doi: 10.1002/anie.v56.1

    46. [46]

      Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Central Science 2016, 2, 325.  doi: 10.1021/acscentsci.6b00024

    47. [47]

      Miller, M. A.; Askevold, B.; Mikula, H.; Kohler, R. H.; Pirovich, D.; Weissleder, R. Nat. Commun. 2017, 8, 15906.  doi: 10.1038/ncomms15906

    48. [48]

      Li, B.; Liu, P.; Wu, H.; Xie, X.; Chen, Z.; Zeng, F.; Wu, S. Biomaterials 2017, 138, 57.  doi: 10.1016/j.biomaterials.2017.05.036

    49. [49]

      Doerr, A. Nat. Meth. 2014, 11, 472.

    50. [50]

      Anon. Nat. Meth. 2015, 12, 16.

    51. [51]

      He, C. Nat. Sci. Rev. 2015, 2, 250.  doi: 10.1093/nsr/nwv030

    52. [52]

      Dumas, A.; Couvreur, P. Chem. Sci. 2015, 6, 2153.  doi: 10.1039/C5SC00070J

    53. [53]

      Rossin, R.; van Duijnhoven, S. M. J.; ten Hoeve, W.; Janssen, H. M.; Kleijn, L. H. J.; Hoeben, F. J. M.; Versteegen, R. M.; Robillard, M. S. Bioconjugate Chem. 2016, 27, 1697.  doi: 10.1021/acs.bioconjchem.6b00231

    54. [54]

      Khan, I.; Agris, P. F.; Yigit, M. V.; Royzen, M. Chem. Commun. 2016, 52, 6174.  doi: 10.1039/C6CC01024E

    55. [55]

      Mejia Oneto, J. M.; Khan, I.; Seebald, L.; Royzen, M. ACS Central Science 2016, 2, 476.  doi: 10.1021/acscentsci.6b00150

    56. [56]

      Heffern, M. C.; Park, H. M.; Au-Yeung, H. Y.; Van de Bittner, G. C.; Ackerman, C. M.; Stahl, A.; Chang, C. J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 14219.  doi: 10.1073/pnas.1613628113

    57. [57]

      Zorn, J. A.; Wells, J. A. Nat. Chem. Biol. 2010, 6, 179.  doi: 10.1038/nchembio.318

    58. [58]

      Qiao, Y.; Molina, H.; Pandey, A.; Zhang, J.; Cole, P. A. Science 2006, 311, 1293.  doi: 10.1126/science.1122224

    59. [59]

      Schwartz, E. C.; Saez, L.; Young, M. W.; Muir, T. W. Nat. Chem. Biol. 2007, 3, 50.  doi: 10.1038/nchembio832

    60. [60]

      Tsai, Y.-H.; Essig, S.; James, J. R.; Lang, K.; Chin, J. W. Nat. Chem. 2015, 7, 554.  doi: 10.1038/nchem.2253

    61. [61]

      Tian, T.; Song, Y.; Wang, J.; Fu, B.; He, Z.; Xu, X.; Li, A.; Zhou, X.; Wang, S.; Zhou, X. J. Am. Chem. Soc. 2016, 138, 955.  doi: 10.1021/jacs.5b11532

    62. [62]

      Qian, K.; Zheng, Y. G. Nat. Chem. Biol. 2014, 10, 328.  doi: 10.1038/nchembio.1507

    63. [63]

      Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S. C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Li, J.; Chen, P. R. Angew. Chem., Int. Ed. 2016, 55, 14046.  doi: 10.1002/anie.v55.45

    64. [64]

      Wang, J.; Cheng, B.; Li, J.; Zhang, Z.; Hong, W.; Chen, X.; Chen, P. R. Angew. Chem., Int. Ed. 2015, 54, 5364.  doi: 10.1002/anie.201409145

    65. [65]

      Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.  doi: 10.1038/nchembio.2406

    66. [66]

      Xie, X.; Li, X.-M.; Qin, F.; Lin, J.; Zhang, G.; Zhao, J.; Bao, X.; Zhu, R.; Song, H.; Li, X. D.; Chen, P. R. J. Am. Chem. Soc. 2017, 139, 6522.  doi: 10.1021/jacs.7b01431

    67. [67]

      Lin, S.; He, D.; Long, T.; Zhang, S.; Meng, R.; Chen, P. R. J. Am. Chem. Soc. 2014, 136, 11860.  doi: 10.1021/ja504371w

    68. [68]

      Yang, Y.; Song, H.; He, D.; Zhang, S.; Dai, S.; Lin, S.; Meng, R.; Wang, C.; Chen, P. R. Nat. Commun. 2016, 7, 12299.  doi: 10.1038/ncomms12299

    69. [69]

      Zhang, S.; He, D.; Lin, Z.; Yang, Y.; Song, H.; Chen, P. R. Acc. Chem. Res. 2017, 50, 1184.  doi: 10.1021/acs.accounts.6b00647

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    5. [5]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    9. [9]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    10. [10]

      Xipu He Wengui Duan Guishan Lin . Reform and Practice of Organic Chemistry Teaching for Non-Chemistry Major under the Four New Construction: Taking the Organic Chemistry Course Reform of Biological Science Major at Guangxi University as an Example. University Chemistry, 2025, 40(7): 42-47. doi: 10.12461/PKU.DXHX202408021

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    13. [13]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    14. [14]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    15. [15]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    19. [19]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    20. [20]

      Dongyan Tang Yanqiu Jiang Su'e Hao Yunchen Du Lizhu Zhang Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062

Metrics
  • PDF Downloads(537)
  • Abstract views(14828)
  • HTML views(5113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return