Citation: Lin Ruoyun, Chen Yang, Tao Guangyu, Pei Xiaojing, Liu Feng, Li Na. FRET-based Ratiometric MicroRNA Detection with G-quadruplex-stabilized Silver Nanoclusters[J]. Acta Chimica Sinica, ;2017, 75(11): 1103-1108. doi: 10.6023/A17090407 shu

FRET-based Ratiometric MicroRNA Detection with G-quadruplex-stabilized Silver Nanoclusters

  • Corresponding author: Li Na, LiNa@pku.edu.cn
  • Received Date: 15 September 2017
    Available Online: 8 November 2017

    Fund Project: the National Natural Science Foundation of China 21535006Project supported by the National Natural Science Foundation of China (Nos. 21475004 and 21535006)the National Natural Science Foundation of China 21475004

Figures(6)

  • Fluorescent DNA-stabilized Ag nanoclusters (DNA-Ag NCs), a class of excellent luminescence probes with excellent optical properties, have been applied in assorted sensing and imaging fields. To date, most of the quantifications were based on the direct signal change of DNA-Ag NCs caused by target recognition, which inevitably jeopardizes the reproducibility and robustness of methods when experimental settings or detecting conditions are changed. In this work, using the highly fluorescent G-quadruplex-stabilized Ag NCs (GQ-Ag NCs) and Cy5 as the donor-acceptor pair, we for the first time developed a FRET based ratiometric method for miRNA detection. A rationally optimized hairpin recognition structure was attached to the G-quadruplex template of the Ag nanocluster. The introduction of target sequence opened the hairpin, led to the approximation of the donor nanocluster and the acceptor Cy5, enabled the energy transfer between the FRET pair, and thus generated the optical signal change. The Cy5 tag sequence was designed to be universal, simplifying the experimental design and reduced the cost in applications. The optical signal for quantitation was determined by the signal difference between the Ag nanocluster and the Cy5 fluorophore, with the fluorescence intensity of Cy5 used as internal reference in order to prevent signal variation. MicroRNAs (miRNA) are short RNA molecules that have emerged as a kind of key post-translational regulators of gene expression in eukaryotic organisms. In this study, microRNA let-7a was chosen as the model target of our FRET-based ratiometric detection for demonstration. The linear range and the detection limit of the method on let-7a was 12~300 nmol/L and 6.9 nmol/L, respectively. The proposed method presented reasonable selectivity amongst the members of the same let-7 family. The remarkable recovery in total RNA extracted from HepG2 cell lines demonstrated the potential in clinical applications. The highlights of our work extended the application of DNA-templated Ag NCs and facilitated more understanding of DNA-Ag NCs as the energy donor in FRET design.
  • 加载中
    1. [1]

      Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Science 2001, 291(5501), 103.

    2. [2]

      Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409.  doi: 10.1146/annurev.physchem.58.032806.104546

    3. [3]

      Richards, C. I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R. M. J. Am. Chem. Soc. 2008, 130(15), 5038.  doi: 10.1021/ja8005644

    4. [4]

      Liu, J. TrAC-Trend. Anal. Chem. 2014, 58, 99.  doi: 10.1016/j.trac.2013.12.014

    5. [5]

      Han, B.; Wang, E. Anal. Bioanal. Chem. 2012, 402(1), 129.  doi: 10.1007/s00216-011-5307-6

    6. [6]

      Choi, S.; Dickson, R. M.; Yu, J. Chem. Soc. Rev. 2012, 41(5), 1867.  doi: 10.1039/C1CS15226B

    7. [7]

      Li, T.; Zhang, L.; Ai, J.; Dong, S.; Wang, E. ACS Nano 2011, 5(8), 6334.  doi: 10.1021/nn201407h

    8. [8]

      Liu, Y.; Zhang, M.; Yin, B.; Ye, B. Anal. Chem. 2012, 84(12), 5165.  doi: 10.1021/ac300483f

    9. [9]

      Ma, J.; Yin, B.; Wu, X.; Ye, B. Anal. Chem. 2016, 88(18), 9219.  doi: 10.1021/acs.analchem.6b02465

    10. [10]

      Huang, Z.; Tao, Y.; Pu, F.; Ren, J.; Qu, X. Chem-Eur. J. 2012, 18(21), 6663.  doi: 10.1002/chem.201103859

    11. [11]

      Ai, J.; Guo, W.; Li, B.; Li, T.; Li, D.; Wang, E. Talanta 2012, 88, 450.  doi: 10.1016/j.talanta.2011.10.057

    12. [12]

      Sun, J.; Yang, F.; Zhao, D.; Chen, C.; Yang, X. ACS Appl. Mater. Inter. 2015, 7(12), 6860.  doi: 10.1021/acsami.5b00434

    13. [13]

      Zhang, P.; Wang, Y.; Chang, Y.; Huang, C. Z. Biosens. Bioe-lectron. 2013, 49, 433.  doi: 10.1016/j.bios.2013.05.056

    14. [14]

      Sengupta, B.; Springer, K.; Buckman, J. G.; Story, S. P.; Abe, O. H.; Hasan, Z. W.; Prudowsky, Z. D.; Rudisill, S. E.; Degtyareva, N. N.; Petty, J. T. J. Phys. Chem. C 2009, 113(45), 19518.  doi: 10.1021/jp906522u

    15. [15]

      Ihara, T.; Ishii, T.; Araki, N.; Wilson, A. W.; Jyo, A. J. Am. Chem. Soc. 2009, 131(11), 3826.  doi: 10.1021/ja809702n

    16. [16]

      Feng, L.; Huang, Z.; Ren, J.; Qu, X. Nucleic Acids Res. 2012, 40(16), e122.  doi: 10.1093/nar/gks387

    17. [17]

      Tao, G.; Chen, Y.; Lin, R.; Zhou, J.; Pei, X.; Liu, F.; Li, N. Nano Res. 2017, https://doi.org/10.1007/s12274-017-1844-4.  doi: 10.1007/s12274-017-1844-4

    18. [18]

      Krol, J.; Loedige, I.; Filipowicz, W. Nat. Rev. Genet. 2010, 11(9), 597.

    19. [19]

      Ameres, S. L.; Zamore, P. D. Nat. Rev. Mol. Cell Bio. 2013, 14(8), 475.  doi: 10.1038/nrm3611

    20. [20]

      Urbich, C.; Kuehbacher, A.; Dimmeler, S. Cardiovasc. Res. 2008, 79(4), 581.  doi: 10.1093/cvr/cvn156

    21. [21]

      Esteller, M. Nat. Rev. Genet. 2011, 12(12), 861.  doi: 10.1038/nrg3074

    22. [22]

      Zhang, B.; Pan, X.; Cobb, G. P.; Anderson, T. A. Dev. Biol. 2007, 302(1), 1.  doi: 10.1016/j.ydbio.2006.08.028

    23. [23]

      Iorio, M. V.; Croce, C. M. EMBO Mol. Med. 2012, 4(3), 143.  doi: 10.1002/emmm.201100209

    24. [24]

      Liu, C.; Wang, Z.; Jia, H.; Li, Z. Chem. Commun. 2011, 47(16), 4661.  doi: 10.1039/c1cc10597c

    25. [25]

      Zhang, P.; Zhang, J.; Wang, C.; Liu, C.; Wang, H.; Li, Z. Anal. Chem. 2014, 86(2), 1076.  doi: 10.1021/ac4026384

    26. [26]

      Li, R.; Wang, Q.; Yin, B.; Ye, B. Biosens. Bioelectron. 2016, 77, 995.  doi: 10.1016/j.bios.2015.10.082

    27. [27]

      Shah, P.; Thulstrup, P. W.; Cho, S. K.; Bhang, Y.-J.; Ahn, J. C.; Choi, S. W.; Bjerrum, M. J.; Yang, S. W. Analyst 2014, 139(9), 2158.  doi: 10.1039/C3AN02150E

    28. [28]

      Yang, S. W.; Vosch, T. Anal. Chem. 2011, 83(18), 6935.  doi: 10.1021/ac201903n

    29. [29]

      Zhang, M.; Liu, Y.; Yu, C.; Yin, B.; Ye, B. Analyst 2013, 138(17), 4812.  doi: 10.1039/c3an00666b

    30. [30]

      Xia, X.; Hao, Y.; Hu, S.; Wang, J. Biosens. Bioelectron. 2014, 51, 36.  doi: 10.1016/j.bios.2013.07.036

    31. [31]

      Shah, P.; Choi, S. W.; Kim, H.-j.; Cho, S. K.; Bhang, Y.-J.; Ryu, M. Y.; Thulstrup, P. W.; Bjerrum, M. J.; Yang, S. W. Nucleic Acids Res. 2016, 44(6), e57.  doi: 10.1093/nar/gkv1377

    32. [32]

      Enkin, N.; Wang, F.; Sharon, E.; Albada, H. B.; Willner, I. ACS Nano 2014, 8(11), 11666.  doi: 10.1021/nn504983j

    33. [33]

      Enkin, N.; Sharon, E.; Golub, E.; Willner, I. Nano Lett. 2014, 14(8), 4918.  doi: 10.1021/nl502720s

    34. [34]

      Schultz, D.; Copp, S. M.; Markešević, N.; Gardner, K.; Oemrawsingh, S. S. R.; Bouwmeester, D.; Gwinn, E. ACS Nano 2013, 7(11), 9798.  doi: 10.1021/nn4033097

    35. [35]

      Jiang, H.; Xu, G.; Sun, Y.; Zheng, W.; Zhu, X.; Wang, B.; Zhang, X.; Wang, G. Chem. Commun. 2015, 51(59), 11810.  doi: 10.1039/C5CC02061A

    36. [36]

      Ye, Y.; Xia, L.; Xu, D.; Xing, X.; Pang, D.; Tang, H. Biosens. Bioelectron. 2016, 85, 837.  doi: 10.1016/j.bios.2016.06.001

    37. [37]

      Li, S.; Fu, Y.; Ma, X.; Zhang, Y. Biosens. Bioelectron. 2017, 88, 210.  doi: 10.1016/j.bios.2016.08.029

    38. [38]

      Wang, W.; Zhan, L.; Du, Y.; Leng, F.; Chang, Y.; Gao, M.; Huang, C. Anal. Methods 2013, 5(20), 5555.  doi: 10.1039/c3ay41146j

    39. [39]

      Wang, Y.; Zhang, X.; Liu, C.; Zhou, X. Acta Chim. Sinica 2017, 75(7), 692.
       

    40. [40]

      Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73(8), 815.
       

    41. [41]

      Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72(6), 709.
       

    42. [42]

      Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74(8), 664.
       

    43. [43]

      Lin, C.; Gong, H.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72(6), 704.
       

    44. [44]

      Lin, R.; Tao, G.; Chen, Y.; Chen, M.; Liu, F.; Li, N. Chem-Eur. J. 2017, 10893.

    45. [45]

      Mujumdar, R. B.; Ernst, L. A.; Mujumdar, S. R.; Lewis, C. J.; Waggoner, A. S. Bioconjug. Chem. 1993, 4(2), 105.  doi: 10.1021/bc00020a001

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(5)
  • Abstract views(2063)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return