Citation: Song Hao, Liu Xiaoyu, Qin Yong. Advances on Nitrogen-centered Radical Chemistry:A Photocatalytic N-H Bond Activation Approach[J]. Acta Chimica Sinica, ;2017, 75(12): 1137-1149. doi: 10.6023/A17080384 shu

Advances on Nitrogen-centered Radical Chemistry:A Photocatalytic N-H Bond Activation Approach

  • Corresponding author: Qin Yong, yongqin@scu.edu.cn
  • Received Date: 23 August 2017
    Available Online: 28 December 2017

    Fund Project: the National Science and Technology Major Projects for "Major New Drugs Innovation and Development" 2017ZX09101005-009-002the National Natural Science Foundation of China 21732005Project supported by the National Natural Science Foundation of China (Nos. 21572140, 21732005) and the National Science and Technology Major Projects for "Major New Drugs Innovation and Development" (No. 2017ZX09101005-009-002)the National Natural Science Foundation of China 21572140

Figures(12)

  • Nitrogen-centered radicals are highly reactive intermediates, which provide new opportunities for designing new chemical reactions and preparing nitrogen-containing molecules. Direct generation of nitrogen-centered radicals via activation of N-H bonds under photocatalytic conditions has emerged as a green, efficient, and economical process, where significant progress has been made with methodology development in very recent years. In this paper, we highlight the important advances in this area that were reported since 2016.
  • 加载中
    1. [1]

      For selected reviews on the N-radical chemistry, see: (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.(b) Stella, L. In Radicals in Organic Synthesis, Vol. 2, Eds.: Renaud, P.; Sibi, M. P., Wiley, New York, 2001, p. 407.(c) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557.

    2. [2]

      For selected examples, see:(a) Lessard, J.; Cote, R.; Mackiewicz, P.; Furstoss, R.; Waegell, B. J. Org. Chem. 1978, 43, 3750.(b) Boivin, J.; Fouquet, E.; Schiano, A.-M.; Zard, S. Z. Tetrahedron 1994, 50, 1769.(c) Gennet, D.; Zard, S. Z.; Zhang, H. Chem. Commun. 2003, 1870.(d) Lu, H.; Li, C. Tetrahedron Lett. 2005, 46, 5983.(e) Guin, J.; Fr hlich, R.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 779.

    3. [3]

      For selected examples, see:(a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573.(b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.(c) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.(d) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.(e) Zhu, M.-K.; Chen, Y.-C.; Loh, T. P. Chem. Eur. J. 2013, 19, 5250.(f) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem. Int. Ed. 2014, 53, 3158.(g) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.

    4. [4]

      For selected reviews on the visible light photocatalysis, see: (a) Xuan, J. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2012, 51, 6828. (b) Shi, L. ; Xia, W. -J. Chem. Soc. Rev. 2012, 41, 7687. (c) Prier, C. K. ; Rankic, D. A. ; Macmillan, D. W. Chem. Rev. 2013, 113, 5322. (d) Xi, Y. -M. ; Yi, H. ; Lei, A. -W. Org. Biomol. Chem. 2013, 11, 2387. (e) Schultz, D. M. ; Yoon, T. P. Science 2014, 343, 985. (f) Xuan, J. ; Zhang, Z. -G. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2015, 54, 15632. (g) Karkas, M. D. ; Porco Jr., J. A. ; Stephenson, C. R. Chem. Rev. 2016, 116, 9683. (h) Romero, N. A. ; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (i) Chen, J. -R. ; Hu, X. -Q. ; Lu, L. -Q. ; Xiao, W. -J. Acc. Chem. Res. 2016, 49, 1911. (j) Liu, Y. ; Song, R. ; Li, J. Sci. China Chem. 2016, 59, 161. (k) Zhang, J. ; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41. )(l) Chen, J. -R. ; Yan, D. -M. ; Wei, Q. ; Xiao, W. -J. ChemPhotoChem 2017, 1, 148.

    5. [5]

      For recent reviews, see:(a) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.(c) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.(d) Nguyen, L. Q.; Knowles, R. R. ACS Catal. 2016, 6, 2894.(e) K rk s, M. D. ACS Catal. 2017, 7, 4999.

    6. [6]

      For recent reviews, see:(a) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.(b) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. Angew. Chem. Int. Ed. 2016, 55, 10578.(c) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389.(d) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.

    7. [7]

      For selected examples, see:(a) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.(b) Hollister, K. A.; Conner, E. S.; Spell, M. L.; Deveaux, K.; Maneval, L.; Beal, M. W.; Ragains, J. R. Angew. Chem. Int. Ed. 2015, 54, 7837.(c) Huang, F.-Q.; Dong, X.; Qi, L.-W.; Zhang, B. Tetrahedron Lett. 2016, 57, 1600.(d) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int. Ed. 2016, 55, 1872.(e) Wang, C.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 13495.(f) Shaaban, S.; Oh, J.; Maulide, N. Org. Lett. 2016, 18, 345.(g) Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2016, 138, 6340.(h) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2017, 56, 1960.

    8. [8]

      Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.  doi: 10.1038/nature19811

    9. [9]

      Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.  doi: 10.1038/nature19810

    10. [10]

      Zhang, L.; Meggers, E. Acc. Chem. Res. 2017, 50, 320.  doi: 10.1021/acs.accounts.6b00586

    11. [11]

      Zhou, Z.; Li, Y.; Han, B.; Gong, L.; Meggers, E. Chem. Sci. 2017, 8, 5757.  doi: 10.1039/C7SC02031G

    12. [12]

      Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964.  doi: 10.1039/C7CC04941B

    13. [13]

      For a recent review, see: Huang, L.; Arndt, M.; Goo en, K.; Heydt, H.; Goo en, L. J. Chem. Rev. 2015, 115, 2596.  doi: 10.1021/cr300389u

    14. [14]

      Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.; Sherwood, T. C.; Knowles, R. R. Science 2017, 355, 727.  doi: 10.1126/science.aal3010

    15. [15]

      For a recent review, see: Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220.  doi: 10.1039/C4CS00467A

    16. [16]

      Shu, W.; Genoux, A.; Li, Z.; Nevado, C. Angew. Chem. Int. Ed. 2017, 56, 10521.  doi: 10.1002/anie.v56.35

    17. [17]

      (a) Hu, X. -Q. ; Chen, J. -R. ; Wei, Q. ; Liu, F. -L. ; Deng, Q. -H. ; Beauchemin, A. M. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2014, 53, 12163. (b) Hu, X. -Q. ; Qi, X. ; Chen, J. -R. ; Zhao, Q. -Q. ; Wei, Q. ; Lan, Y. ; Xiao, W. -J. Nat. Commun. 2016, 7, 11188. (c) Zhao, Q. -Q. ; Hu, X. -Q. ; Yang, M. -N. ; Chen, J. -R. ; Xiao, W. -J. Chem. Commun. 2016, 52, 12749. (d) Hu, X. -Q. ; Chen, J. ; Chen, J. -R. ; Yan, D. -M. ; Xiao, W. -J. Chem. Eur. J. 2016, 22, 14141. (e) Zhao, Q. -Q. ; Chen, J. ; Yan, D. -M. ; Chen, J. -R. ; Xiao, W. -J. Org. Lett. 2017, 19, 3620. (f) Yu, X. ; Zhou, F. ; Chen, J. ; Xiao, W. Acta Chim. Sinica 2017, 75, 86(in Chinese). (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86. )

    18. [18]

      Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem. Eur. J. 2016, 22, 15669.  doi: 10.1002/chem.201604014

    19. [19]

      Ito, E.; Fukushima, T.; Kawakami, T.; Murakami, K.; Itami, K. Chem 2017, 2, 383.  doi: 10.1016/j.chempr.2017.02.006

    20. [20]

      (a) Zhao, Y.; Huang, B.; Yang, C.; Xia, W. Org. Lett. 2016, 18, 3326. (b) Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W. ACS Catal. 2017, 7, 2446.

    21. [21]

      Wang, X.; Xia, D.; Qin, W.; Zhou, R.; Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan, L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y. Chem 2017, 2, 803.  doi: 10.1016/j.chempr.2017.04.007

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

Metrics
  • PDF Downloads(225)
  • Abstract views(6360)
  • HTML views(2808)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return