Citation: Song Hao, Liu Xiaoyu, Qin Yong. Advances on Nitrogen-centered Radical Chemistry:A Photocatalytic N-H Bond Activation Approach[J]. Acta Chimica Sinica, ;2017, 75(12): 1137-1149. doi: 10.6023/A17080384 shu

Advances on Nitrogen-centered Radical Chemistry:A Photocatalytic N-H Bond Activation Approach

  • Corresponding author: Qin Yong, yongqin@scu.edu.cn
  • Received Date: 23 August 2017
    Available Online: 28 December 2017

    Fund Project: the National Science and Technology Major Projects for "Major New Drugs Innovation and Development" 2017ZX09101005-009-002the National Natural Science Foundation of China 21732005Project supported by the National Natural Science Foundation of China (Nos. 21572140, 21732005) and the National Science and Technology Major Projects for "Major New Drugs Innovation and Development" (No. 2017ZX09101005-009-002)the National Natural Science Foundation of China 21572140

Figures(12)

  • Nitrogen-centered radicals are highly reactive intermediates, which provide new opportunities for designing new chemical reactions and preparing nitrogen-containing molecules. Direct generation of nitrogen-centered radicals via activation of N-H bonds under photocatalytic conditions has emerged as a green, efficient, and economical process, where significant progress has been made with methodology development in very recent years. In this paper, we highlight the important advances in this area that were reported since 2016.
  • 加载中
    1. [1]

      For selected reviews on the N-radical chemistry, see: (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.(b) Stella, L. In Radicals in Organic Synthesis, Vol. 2, Eds.: Renaud, P.; Sibi, M. P., Wiley, New York, 2001, p. 407.(c) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557.

    2. [2]

      For selected examples, see:(a) Lessard, J.; Cote, R.; Mackiewicz, P.; Furstoss, R.; Waegell, B. J. Org. Chem. 1978, 43, 3750.(b) Boivin, J.; Fouquet, E.; Schiano, A.-M.; Zard, S. Z. Tetrahedron 1994, 50, 1769.(c) Gennet, D.; Zard, S. Z.; Zhang, H. Chem. Commun. 2003, 1870.(d) Lu, H.; Li, C. Tetrahedron Lett. 2005, 46, 5983.(e) Guin, J.; Fr hlich, R.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 779.

    3. [3]

      For selected examples, see:(a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett. 2004, 6, 1573.(b) Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.(c) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.(d) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.(e) Zhu, M.-K.; Chen, Y.-C.; Loh, T. P. Chem. Eur. J. 2013, 19, 5250.(f) Duan, X.-Y.; Zhou, N.-N.; Fang, R.; Yang, X.-L.; Yu, W.; Han, B. Angew. Chem. Int. Ed. 2014, 53, 3158.(g) Duan, X. Y.; Yang, X. L.; Jia, P. P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.

    4. [4]

      For selected reviews on the visible light photocatalysis, see: (a) Xuan, J. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2012, 51, 6828. (b) Shi, L. ; Xia, W. -J. Chem. Soc. Rev. 2012, 41, 7687. (c) Prier, C. K. ; Rankic, D. A. ; Macmillan, D. W. Chem. Rev. 2013, 113, 5322. (d) Xi, Y. -M. ; Yi, H. ; Lei, A. -W. Org. Biomol. Chem. 2013, 11, 2387. (e) Schultz, D. M. ; Yoon, T. P. Science 2014, 343, 985. (f) Xuan, J. ; Zhang, Z. -G. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2015, 54, 15632. (g) Karkas, M. D. ; Porco Jr., J. A. ; Stephenson, C. R. Chem. Rev. 2016, 116, 9683. (h) Romero, N. A. ; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. (i) Chen, J. -R. ; Hu, X. -Q. ; Lu, L. -Q. ; Xiao, W. -J. Acc. Chem. Res. 2016, 49, 1911. (j) Liu, Y. ; Song, R. ; Li, J. Sci. China Chem. 2016, 59, 161. (k) Zhang, J. ; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41. )(l) Chen, J. -R. ; Yan, D. -M. ; Wei, Q. ; Xiao, W. -J. ChemPhotoChem 2017, 1, 148.

    5. [5]

      For recent reviews, see:(a) Chen, J.-R.; Hu, X. Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069.(c) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.(d) Nguyen, L. Q.; Knowles, R. R. ACS Catal. 2016, 6, 2894.(e) K rk s, M. D. ACS Catal. 2017, 7, 4999.

    6. [6]

      For recent reviews, see:(a) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.(b) Zhu, R.-Y.; Farmer, M. E.; Chen, Y.-Q.; Yu, J.-Q. Angew. Chem. Int. Ed. 2016, 55, 10578.(c) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Acc. Chem. Res. 2016, 49, 1389.(d) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.

    7. [7]

      For selected examples, see:(a) Qin, Q.; Yu, S. Org. Lett. 2015, 17, 1894.(b) Hollister, K. A.; Conner, E. S.; Spell, M. L.; Deveaux, K.; Maneval, L.; Beal, M. W.; Ragains, J. R. Angew. Chem. Int. Ed. 2015, 54, 7837.(c) Huang, F.-Q.; Dong, X.; Qi, L.-W.; Zhang, B. Tetrahedron Lett. 2016, 57, 1600.(d) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem. Int. Ed. 2016, 55, 1872.(e) Wang, C.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 13495.(f) Shaaban, S.; Oh, J.; Maulide, N. Org. Lett. 2016, 18, 345.(g) Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V. J. Am. Chem. Soc. 2016, 138, 6340.(h) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2017, 56, 1960.

    8. [8]

      Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.  doi: 10.1038/nature19811

    9. [9]

      Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.  doi: 10.1038/nature19810

    10. [10]

      Zhang, L.; Meggers, E. Acc. Chem. Res. 2017, 50, 320.  doi: 10.1021/acs.accounts.6b00586

    11. [11]

      Zhou, Z.; Li, Y.; Han, B.; Gong, L.; Meggers, E. Chem. Sci. 2017, 8, 5757.  doi: 10.1039/C7SC02031G

    12. [12]

      Yuan, W.; Zhou, Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964.  doi: 10.1039/C7CC04941B

    13. [13]

      For a recent review, see: Huang, L.; Arndt, M.; Goo en, K.; Heydt, H.; Goo en, L. J. Chem. Rev. 2015, 115, 2596.  doi: 10.1021/cr300389u

    14. [14]

      Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.; Sherwood, T. C.; Knowles, R. R. Science 2017, 355, 727.  doi: 10.1126/science.aal3010

    15. [15]

      For a recent review, see: Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220.  doi: 10.1039/C4CS00467A

    16. [16]

      Shu, W.; Genoux, A.; Li, Z.; Nevado, C. Angew. Chem. Int. Ed. 2017, 56, 10521.  doi: 10.1002/anie.v56.35

    17. [17]

      (a) Hu, X. -Q. ; Chen, J. -R. ; Wei, Q. ; Liu, F. -L. ; Deng, Q. -H. ; Beauchemin, A. M. ; Xiao, W. -J. Angew. Chem. Int. Ed. 2014, 53, 12163. (b) Hu, X. -Q. ; Qi, X. ; Chen, J. -R. ; Zhao, Q. -Q. ; Wei, Q. ; Lan, Y. ; Xiao, W. -J. Nat. Commun. 2016, 7, 11188. (c) Zhao, Q. -Q. ; Hu, X. -Q. ; Yang, M. -N. ; Chen, J. -R. ; Xiao, W. -J. Chem. Commun. 2016, 52, 12749. (d) Hu, X. -Q. ; Chen, J. ; Chen, J. -R. ; Yan, D. -M. ; Xiao, W. -J. Chem. Eur. J. 2016, 22, 14141. (e) Zhao, Q. -Q. ; Chen, J. ; Yan, D. -M. ; Chen, J. -R. ; Xiao, W. -J. Org. Lett. 2017, 19, 3620. (f) Yu, X. ; Zhou, F. ; Chen, J. ; Xiao, W. Acta Chim. Sinica 2017, 75, 86(in Chinese). (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86. )

    18. [18]

      Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem. Eur. J. 2016, 22, 15669.  doi: 10.1002/chem.201604014

    19. [19]

      Ito, E.; Fukushima, T.; Kawakami, T.; Murakami, K.; Itami, K. Chem 2017, 2, 383.  doi: 10.1016/j.chempr.2017.02.006

    20. [20]

      (a) Zhao, Y.; Huang, B.; Yang, C.; Xia, W. Org. Lett. 2016, 18, 3326. (b) Zhao, Y.; Huang, B.; Yang, C.; Li, B.; Gou, B.; Xia, W. ACS Catal. 2017, 7, 2446.

    21. [21]

      Wang, X.; Xia, D.; Qin, W.; Zhou, R.; Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan, L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y. Chem 2017, 2, 803.  doi: 10.1016/j.chempr.2017.04.007

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(205)
  • Abstract views(5915)
  • HTML views(2591)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return