Citation: Zhang Zi-Jing, Tao Zhong-Lin, Arafate Adele, Gong Liu-Zhu. Asymmetric Carbonyl Allylation of Aldehydes with Allylic Alcohols under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid[J]. Acta Chimica Sinica, ;2017, 75(12): 1196-1201. doi: 10.6023/A17080372 shu

Asymmetric Carbonyl Allylation of Aldehydes with Allylic Alcohols under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid

  • Corresponding author: Gong Liu-Zhu, gonglz@ustc.edu.cn
  • Received Date: 14 August 2017
    Available Online: 9 December 2017

    Fund Project: the National Natural Science Foundation of China 21232007Project supported by the National Natural Science Foundation of China (No. 21232007)

Figures(3)

  • The asymmetric carbonyl allylation of aldehydes with allylmetal reagents presents one of the most efficient and straightforward methods for the synthesis of optically active homoallylic alcohols, which have found widespread applications in organic synthesis. As such, a wide range of chiral catalysts, including Lewis acids, Lewis bases and Br nsted acids have been reported to enable highly stereoselective carbonyl allylation of aldehydes with allylmetal reagents. Among them, chiral phosphoric acid-catalyzed carbonyl allylation of aldehydes with pinacol allylboronates represents a promising method, whereas an additional operations required for the preparation of allylboronates from allyl halides or highly active allylmetallics impose some constraints on the carbonyl allylation process. In this context, the asymmetric addition of allylboronates, in situ generated from palladium-catalyzed allylborylation, to aldehydes has been reported, while stoichiometric amounts of chiral diboronate reagents are basically required. Allylic alcohols are readily available feedstock. The direct use of allylic alcohols as starting materials in asymmetric allylborylation of carbonyls is highly valuable. Herein, we will report an asymmetric carbonyl allylation of aldehydes with allylic alcohols in the presence of octamethyl-2, 2'-bi(1, 3, 2-dioxaborolane) under the sequential catalysis of a palladium complex and chiral phosphoric acid. The presence of 2.5 mol% (η3-C3H5)2Pd2Cl2, 5 mol% P(OPh)3 and 10 mol% chiral phosphoric acid B*H-1 enabled 4-nitrobenzaldehyde 2a to smoothly undergo the asymmetric carbonyl allylation reaction with 2-buten-1-ol 1a and octamethyl-2, 2'-bi(1, 3, 2-dioxaborolane), giving rise to the desired homoallylic alcohol product 3aa in a 99% yield and with >20:1 dr and 92% ee. Under the optimal conditions, the generality for allylic alcohol substrates was investigated to reveal that the installation of either of saturated alkyl substituents, carbon-carbon double bond or heteroatom group in the allylic alcohols allowed the target products (3ca~3fa, 3ha~3ja) to be obtained in high yields and with excellent stereoselectivities. A (Z)-allylic alcohol and branched allylic alcohols were also able to generate the target products (3ba, 3ga), successfully. Although cinnamic alcohols participated in a clean reaction, relatively lower yields and stereoselectivity were delivered (3ka and 3la). The examination of aldehydes suggested that the introduction of either electronically deficient or rich substituents to the benzene ring of benzaldehydes was tolerant and led to corresponding homoallylic alcohols in excellent yields and stereoselectivities (3ab~3ak and 3m), with the exception of o-anisaldehyde (3al). In addition, 2-naphthaldehyde, aliphatic aldehydes and enals are all good substrates and provide high yields and enantiomeric excesses as exemplified by 3-phenylpropanal and 4-methoxycinnamaldehyde (3an~3ap).
  • 加载中
    1. [1]

      (a) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry, Ed.: Otera, J., Wiley-VCH, Weinheim, Germany, 2000, pp. 403~490; (b) Elford, T. G.; Hall, D. G. Synthesis 2010, 893;(c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.

    2. [2]

      (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207;(b) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763;(c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.

    3. [3]

      For examples with chiral Lewis acids as catalysts, see:(a) Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561;(b) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001;(c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467;(d) Ishiyama, T.; Ahiko, T.-A.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414;(e) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910.

    4. [4]

    5. [5]

      For examples with chiral Br nsted acids as catalysts, see:(a) Rauniyar, V.; Hall, D. G. Angew. Chem., Int. Ed. 2006, 45, 2426;(b) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481;(c) Rauniyar, V.; Hall, D. G. J. Org. Chem. 2009, 74, 4236;(d) Jain, P.; Antilla, J. C. J. Am. Chem. Soc. 2010, 132, 11884;(e) Xing, C.-H.; Liao, Y.-X.; Zhang, Y.; Sabarova, D.; Bassous, M.; Hu, Q.-S. Eur. J. Org. Chem. 2012, 1115.

    6. [6]

      For other examples of asymmetric carbonyl allylation reactions, see:(a) Kim, I. S.; Ngai, M.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891;(b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128, 12660;(c) Barnett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem., Int. Ed. 2009, 48, 8679.

    7. [7]

      For the selected achiral examples, see:(a) Sebelius, S.; Wallner, O. A.; Szabó, K. J. Org. Lett. 2003, 5, 3065;(b) Selander, N.; Sebelius, S.; Estay, C.; Szabó, K. J. Eur. J. Org. Chem. 2006, 4085;(c) Se-lander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723;(d) Olsson, V. J.; Szabó, K. J. Angew. Chem., Int. Ed. 2007, 46, 6891;(e) Selander, N.; Szabó, K. J. Chem. Commun. 2008, 3420;(f) Zhou, Y.-H.; Wang, H.; Liu, Y.; Zhao, Y.-L.; Zhang, C.-X.; Qu, J.-P. Org. Chem. Front. 2017, 4, 1580.

    8. [8]

      For the examples of using chiral diboronates, see:(a) Sebelius, S.; Szabó, K. J. Eur. J. Org. Chem. 2005, 2539;(b) Vogt, M.; Ceylan, S.; Kirschning, A. Tetrahedron 2010, 66, 6450.

    9. [9]

    10. [10]

      (a) Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135;(b) Tsukamoto, H.; Kawase, A.; Doi, T. Chem. Commun. 2015, 51, 8027.

    11. [11]

      Yatagai, M.; Yamagishi, T.; Hida, M. Bull. Chem. Soc. Jpn. 1984, 57, 823.(b) McIntosh, J. M.; Leavitt, R. K. Tetrahedron Lett. 1986, 27, 3839.(c) Jiang, Y. Z.; Liu, G.; Zhou, C. Y.; Piao, H. R.; Wu, L. J.; Mi, A. Q. Synth. Commun. 1991, 21, 1087.

    12. [12]

    13. [13]

      (a) Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716.(b) Wang, H.; Jain, P.; Antilla, J. C.; Houk, K. N. J. Org. Chem. 2013, 78, 1208.(c) Incerti-Pradillos, C. A.; Kabeshov, M. A.; Malkov, A. V. Angew. Chem., Int. Ed. 2013, 52, 5338.

    14. [14]

    15. [15]

      Jiang, G.-X.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.  doi: 10.1002/anie.v50.40

    16. [16]

      Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Arafate Adele; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.  doi: 10.1021/ja402740q

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(11)
  • Abstract views(769)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return