Citation: Mu Weihua, Ma Yao, Fang Decai, Wang Rong, Zhang Haina. Computational Insights into the Diels-Alder-alike Reactions of 1-Iodo-2-Lithio-o-Carborane with Fulvenes[J]. Acta Chimica Sinica, ;2018, 76(1): 55-61. doi: 10.6023/A17080357 shu

Computational Insights into the Diels-Alder-alike Reactions of 1-Iodo-2-Lithio-o-Carborane with Fulvenes

  • Corresponding author: Mu Weihua, weihua_mu@ynnu.edu.cn
  • Received Date: 3 August 2017
    Available Online: 20 January 2017

    Fund Project: the National Natural Science Foundation of China 21373030the National Natural Science Foundation of China 21763033Project supported by the National Natural Science Foundation of China (Nos. 21363028, 21763033, 21373030) and Innovative Training Program for College Students in Yunnan Provincethe National Natural Science Foundation of China 21363028

Figures(6)

  • Density functional theory (DFT) calculations at the B3LYP level, combining with the double-ζ valence polarized (DZVP) all-electron basis set as embeded in Gaussian 09 Program, were carried out to investigate the reaction mechanisms and substituent effect of Diels-Alder-alike reactions between 1-iodo-2-lithio-o-carborane and fulvenes. For maximum analogy with experimental conditions, all calculations were carried out in cyclohexane solution by using the IDSCRF solvent model, and all energies reported here had been adjusted adaptive to experimental temperature (353 K). According to presently obtained results, this reaction needs to go through a four-step process successively before the final carboranonorbornadiene products are formed. These four steps include forming carboryne intermediate by release of LiI fragment, interaction of carboryne with fulvenes, 1, 2-σ migration of carboranyl, and the cycloaddition process. Among all four steps mentioned above, the 1, 2-σ migration of carboranyl is predicted to be the rate-determining step (RDS), features an activation free energy barrier of 28.3 kcal·mol-1 under experimental temperature of 353 K. A half-life of 8.7 h converted from the RDS activation free energy barrier coincides well with corresponding 56% isolated yield of carboranonorbornadiene after reacted 8 h. The LiI fragment is found to be vital in stabilizing most stationary points and driving the reaction ahead. The reaction mechanisms change little when the 4-H substituents on diphenylfulvenes (denoted reaction a) is replaced by 4-Me groups (denoted reaction b), but the corresponding RDS activation free energy barrier increased by 2.8 kcal·mol-1 (from 28.3 to 31.1 kcal·mol-1), transferring to a decrease in reaction rate of ca. 50 times. The obvious slower reaction rate predicted in reaction b than in reaction a gives out correct trends with an experimental yield reduction of carboranonorbornadienes from 56% to 42%, and verifies the rationality of B3LYP results in these carboranyl-involved Diels-Alder-alike reactions. Natural bond orbital (NBO) analysis about corresponding reactants and stationary points shows similar electronic characteristics of this reaction with normal-electron-demand Diels-Alder (NEDDA) reactions, i.e., the fulvenes act as electron donator when react with carboryne intermediate.
  • 加载中
    1. [1]

      Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467.  doi: 10.1002/chem.201602822

    2. [2]

      Pellissier, H. Chem. Rev. 2016, 116, 14868.  doi: 10.1021/acs.chemrev.6b00639

    3. [3]

      Wei, L.; Wang, C.-J. Chem. Commun. 2015, 51, 15374.  doi: 10.1039/C5CC06465A

    4. [4]

      Ai, W.; Liao, D.; Lei, X. Chin. J. Org. Chem. 2015, 35, 1615(in Chinese).
       

    5. [5]

      Liu, W.; Wu, Y.; Li, L.; Li, X. Chin. J. Org. Chem. 2016, 36, 1501(in Chinese).
       

    6. [6]

      Cao, M.-H.; Green, N. J.; Xu, S.-Z. Org. Biomol. Chem. 2017, 15, 3105.  doi: 10.1039/C6OB02761J

    7. [7]

      Xie, M.; Lin, L.; Feng, X. Chem. Rec. 2017, 17, 1.
       

    8. [8]

      Fang, D.; Chen, Y. Acta Chim. Sinica 2014, 72, 253(in Chinese).
       

    9. [9]

      Ran, Y.; Tang, M.; Wang, Y.; Wang, Y.; Zhang, X.; Zhu, Y.; Wei, D.; Zhang, W. Tetrahedron 2016, 72, 5295.  doi: 10.1016/j.tet.2016.06.057

    10. [10]

      Musavi, S. M.; Amani, J.; Omidian, N. Tetrahedron 2014, 70, 708.  doi: 10.1016/j.tet.2013.11.089

    11. [11]

      Li, Y.; Fang, D.-C. Phys. Chem. Chem. Phys. 2014, 16, 15224.  doi: 10.1039/c4cp02068e

    12. [12]

      Tang, M.; Wu, Y.; Liu, Y.; Cai, M.; Xia, F.; Liu, S.; Hu, W. Acta Chim. Sinica 2016, 74, 54(in Chinese).  doi: 10.7503/cjcu20150436

    13. [13]

      Yang, Y.-F.; Liang, Y.; Liu, F.; Houk, K. N. J. Am. Chem. Soc. 2016, 138, 1660.  doi: 10.1021/jacs.5b12054

    14. [14]

      Duan, A.; Yu, P.; Liu, F.; Qiu, H.; Gu, F. L.; Doyle, M. P.; Houk, K. N. J. Am. Chem. Soc. 2017, 139, 2766.  doi: 10.1021/jacs.6b12371

    15. [15]

      Yang, Y.; Liu, Q.; Zhang, L.; Yu, H.; Dang, Z. Organometallics 2017, 36, 687.  doi: 10.1021/acs.organomet.6b00886

    16. [16]

      Li, Y.; Du, S. RSC Adv. 2016, 6, 84177.  doi: 10.1039/C6RA16321A

    17. [17]

      Diamond, O. J.; Marder, T. B. Org. Chem. Front. 2017, 4, 891.  doi: 10.1039/C7QO00071E

    18. [18]

      Ess, D. H.; Jones, G. O.; Houk, K. N. Adv. Synth. Catal. 2006, 348, 2337.  doi: 10.1002/(ISSN)1615-4169

    19. [19]

      Yu, P.; Yang, Z.; Liang, Y.; Hong, X.; Li, Y.; Houk, K. N. J. Am. Chem. Soc. 2016, 138, 8247.  doi: 10.1021/jacs.6b04113

    20. [20]

      Yu, P.; Li, W.; Houk, K. N. J. Org. Chem. 2017, 82, 6398.  doi: 10.1021/acs.joc.7b01132

    21. [21]

      Pellissier, H. Adv. Synth. Catal. 2016, 358, 2194.  doi: 10.1002/adsc.v358.14

    22. [22]

      Mojica, M.; Méndez, F.; Alonso, J. A. Molecules 2016, 21, 200.  doi: 10.3390/molecules21020200

    23. [23]

      Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L. Chem. Soc. Rev. 2017, 46, 4895.  doi: 10.1039/C7CS00184C

    24. [24]

      Fell, J. S.; Lopez, S. A.; Higginson, C. J.; Finn, M. G.; Houk, K. N. Org. Lett. 2017, 19, 4504.  doi: 10.1021/acs.orglett.7b02064

    25. [25]

      Liu, F.; Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 11483.  doi: 10.1021/ja505569a

    26. [26]

      Levandowski, B. J.; Zou, L.; Houk, K. N. J. Comput. Chem. 2016, 37, 117.  doi: 10.1002/jcc.24191

    27. [27]

      Zhang, J.; Qiu, Z.; Xu, P.-F.; Xie, Z. ChemPlusChem 2014, 79, 1044.  doi: 10.1002/cplu.201402129

    28. [28]

      Tang, C.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 7662.  doi: 10.1002/anie.201502502

    29. [29]

      (a) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 10623; (b) Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.

    30. [30]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    31. [31]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    32. [32]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    33. [33]

      Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.  doi: 10.1021/cr00088a005

    34. [34]

      Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.  doi: 10.1063/1.449486

    35. [35]

      Carpenter, J. E.; Weinhold, F. J. Mol. Struct. 1988, 169, 41.  doi: 10.1016/0166-1280(88)80248-3

    36. [36]

      Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014, 53, 12902.  doi: 10.1002/anie.201409141

    37. [37]

      Qiu, Z.; Xie, Z. Dalton Trans. 2014, 43, 4925.  doi: 10.1039/C3DT52711E

    38. [38]

      Wang, S. R.; Xie, Z. Organometallics 2012, 31, 4544.  doi: 10.1021/om300324n

    39. [39]

      Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.  doi: 10.1021/ar100156f

    40. [40]

      Dang, Y.; Qu, S.; Tao, Y.; Song, C.; Wang, Z. X. J. Org. Chem. 2014, 79, 9046.  doi: 10.1021/jo501399x

    41. [41]

      Dub, P. A.; Béthegnies, A.; Poli, R. Organometallics 2012, 31, 294.  doi: 10.1021/om2009149

    42. [42]

      Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.  doi: 10.1139/v92-079

    43. [43]

      Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. J. Phys. Chem. 1992, 96, 6630.  doi: 10.1021/j100195a022

    44. [44]

      Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.  doi: 10.1016/0301-0104(81)85090-2

    45. [45]

      Tao, J.-Y.; Mu, W.-H.; Chass, G. A.; Tang, T.-H.; Fang, D.-C. Int. J. Quantum Chem. 2013, 113, 975.  doi: 10.1002/qua.24065

    46. [46]

      Fang, D.-C. THERMO, Beijing Normal University, Beijing, China.

    47. [47]

      Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.  doi: 10.1063/1.456010

    48. [48]

      Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.  doi: 10.1021/j100377a021

    49. [49]

      Fukui, K. Acc. Chem. Res. 1981, 14, 363.  doi: 10.1021/ar00072a001

    50. [50]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787.  doi: 10.1002/(ISSN)1096-987X

    51. [51]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.  doi: 10.1063/1.3382344

    52. [52]

      Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.  doi: 10.1039/b810189b

    53. [53]

      Zhao, Y.; Truhlar, D. G. J. Phys. Chem. 2006, 110, 5121.  doi: 10.1021/jp060231d

    54. [54]

      Mu, W. H.; Xia, S. Y.; Li, J. X.; Fang, D. C.; Wei, G.; Chass, G. A. J. Org. Chem. 2015, 80, 9108.  doi: 10.1021/acs.joc.5b01464

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(12)
  • Abstract views(3681)
  • HTML views(1082)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return