Citation: Yang Limin, Liu Bo, Li Na, Tang Bo. Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules[J]. Acta Chimica Sinica, ;2017, 75(11): 1047-1060. doi: 10.6023/A17080353 shu

Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules

  • Corresponding author: Li Na, lina@sdnu.edu.cn Tang Bo, tangb@sdnu.edu.cn
  • Received Date: 3 August 2017
    Available Online: 18 November 2017

    Fund Project: the National Natural Science Foundation of China 21535004the National Natural Science Foundation of China 21505087Project supported by the 973 Program (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21390411, 21535004, 21422505, 21375081, 21505087), and the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201503)the National Natural Science Foundation of China 21375081the Natural Science Foundation for Distinguished Young Scholars of Shandong Province JQ201503the National Natural Science Foundation of China 21390411the National Natural Science Foundation of China 21422505the 973 Program 2013CB933800

Figures(15)

  • Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), play important roles in normal or abnormal life activities. DNA is an important genetic material and carrier of genetic information. It plays an important role in cell division, biological development, mutation, cancer, etc. RNA includes mRNA, tRNA, microRNA (miRNA) and small RNA. Tumor-associated mRNA has been widely used as a specific marker to assess the migration of tumor cells, and its expression level is related to the tumor burden and malignant progression. MiRNA is a non-coding small molecule RNA that regulates at least 30% of the genes. MiRNA is involved in most of the biological process, such as proliferation, differentiation, senescence, migration and apoptosis. The abnormal expression of DNA, mRNA and miRNA is closely associated with the occurrence and development of multiple diseases. Therefore, developing accurate and effective methods for detecting nucleic acid molecules is of great significance for studying the function of nucleic acid regulation and achieving the early detection and treatment of diseases. Fluorescence detection method and imaging technology provide powerful tools for real-time and accurately detecting nucleic acid molecules due to their high sensitivity and temporal resolution. Fluorescent nanoprobe has many advantages such as good biocompatibility, good solubility and so on. It has been widely used in the detection of nucleic acid molecules for further understanding the roles of nucleic acid in many diseases. In this review, we have showed the roles of various nucleic acid molecules in life activities and illustrated the advances in the development of fluorescent nanoprobe for detection of disease-related DNA, mRNA and miRNA in live cells and in vivo in recent years. The preparation of these nanoprobe, detection mechanism and imaging application were also presented. Finally, the challenge and future development of constructing new fluorescent nanoprobe for nucleic acids detection were proposed.
  • 加载中
    1. [1]

      Jackson, S. P.; Bartek, J. Nature 2009, 461, 1071.  doi: 10.1038/nature08467

    2. [2]

      Anker, P.; Mulcahy, H.; Chen, X. Q.; Stroun, M. Cancer Metastasis Rev. 1999, 18, 65.  doi: 10.1023/A:1006260319913

    3. [3]

      Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.  doi: 10.1016/S0092-8674(00)81683-9

    4. [4]

      Zimmerman, A. L.; Wu, S. Cancer Lett. 2011, 300, 10.  doi: 10.1016/j.canlet.2010.09.019

    5. [5]

      Rooij, E. v.; Olson, E. N. Nat. Rev. Drug Discov. 2012, 11, 860.  doi: 10.1038/nrd3864

    6. [6]

      Pavlov, V.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2005, 127, 6522.  doi: 10.1021/ja050678k

    7. [7]

      Hou, T.; Li, W.; Liu, X.; Li, F. Anal. Chem. 2015, 87, 11368.  doi: 10.1021/acs.analchem.5b02790

    8. [8]

      Liu, H.; Li, L.; Duan, L.; Wang, X.; Xie, Y.; Tong, L.; Wang, Q.; Tang, B. Anal. Chem. 2013, 85, 7941.  doi: 10.1021/ac401715k

    9. [9]

      Ge, L.; Wang, W.; Hou, T.; Li, F. Biosens. Bioelectron. 2016, 77, 220.  doi: 10.1016/j.bios.2015.09.041

    10. [10]

      Tian, H.; Sun, Y.; Liu, C.; Duan, X.; Tang, W.; Li, Z. Anal. Chem. 2016, 88, 11384.  doi: 10.1021/acs.analchem.6b01225

    11. [11]

      Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Anal. Chem. 2007, 79, 6037.  doi: 10.1021/ac070635h

    12. [12]

      Song, J.; Yang, Q.; Lv, F.; Liu, L.; Wang, S. ACS Appl. Mater. Interfaces 2012, 4, 2885.  doi: 10.1021/am300830r

    13. [13]

      Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. ACS Nano 2015, 9, 11064.  doi: 10.1021/acsnano.5b04501

    14. [14]

      Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B. Anal. Chem. 2015, 87, 3678.  doi: 10.1021/ac503975x

    15. [15]

      Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. J. Am. Chem. Soc. 2008, 130, 8351.  doi: 10.1021/ja800604z

    16. [16]

      Li, X.; Wang, Y.; Zhang, X.; Zhao, Y.; Liu, C.; Li, Z. Acta Chim. Sinica 2014, 72, 395(in Chinese).
       

    17. [17]

      Bao, H.; Jia, C.; Zhou, Z.; Jin, Q.; Zhao, J. Acta Chim. Sinica 2009, 67, 2144(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.18.015
       

    18. [18]

      Zeng, G.; Xiang, D.; He, Z. Acta Chim. Sinica 2011, 69, 1450. (in Chinese).
       

    19. [19]

      Deng, H.; Wang, G.; Zhu, B.; Zhu, L.; Wang, D.; Zhuang, Y.; Zhu, X. Acta Chim. Sinica 2012, 70, 2507(in Chinese).  doi: 10.3866/PKU.WHXB201209264
       

    20. [20]

      Ge, L.; Sun, X.; Hong, Q.; Li, F. ACS Appl. Mater. Interfaces 2017, 9, 13102.  doi: 10.1021/acsami.7b03198

    21. [21]

      Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. ACS Nano 2012, 6, 3553.  doi: 10.1021/nn300598q

    22. [22]

      Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem. Int. Ed. 2009, 48, 8670.  doi: 10.1002/anie.v48:46

    23. [23]

      He, S.; Song, B.; Li, D.; Zhu. C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.  doi: 10.1002/adfm.v20:3

    24. [24]

      Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. J. Am. Chem. Soc. 2013, 135, 11832.  doi: 10.1021/ja403485r

    25. [25]

      Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755.  doi: 10.1002/adma.201606755

    26. [26]

      Zhu, X.; Zhou, X.; Xing, D. Chem. Eur. J. 2013, 19, 5487.  doi: 10.1002/chem.201204605

    27. [27]

      Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Nanoscale 2012, 4, 5840.  doi: 10.1039/c2nr31497e

    28. [28]

      Tu, Y.; Wu, P.; Zhang, H.; Cai, C. Chem. Commun. 2012, 48, 10718.  doi: 10.1039/c2cc35564g

    29. [29]

      Tu, Y.; Li, W.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2013, 85, 2536.  doi: 10.1021/ac303772m

    30. [30]

      Yang, L.; Liu, C.; Ren, W.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 6450.  doi: 10.1021/am302268t

    31. [31]

      Wang, X.-P.; Yin, B.; Ye, B.-C. RSC Adv. 2013, 3, 8633.  doi: 10.1039/c3ra23296d

    32. [32]

      Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P. P.; Fiammengo, R. J. Am. Chem. Soc. 2014, 136, 2264.  doi: 10.1021/ja412152x

    33. [33]

      Liu, H.; Li, L.; Wang, Q.; Duan, L.; Tang, B. Anal. Chem. 2014, 86, 5487.  doi: 10.1021/ac500752t

    34. [34]

      Wang, W.; Kong, T.; Zhang, D.; Zhang, J.; Cheng, G. Anal. Chem. 2015, 87, 10822.  doi: 10.1021/acs.analchem.5b01930

    35. [35]

      Li, W.; Hou, T.; Wu, M.; Li, F. Talanta 2016, 148, 116.  doi: 10.1016/j.talanta.2015.10.078

    36. [36]

      Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan C.; Zuo, X.; Mi, X. ACS Appl. Mater. Interfaces 2015, 7, 16152.  doi: 10.1021/acsami.5b04773

    37. [37]

      Cui, L.; Lin, X.; Lin, N.; Song, Y.; Zhu, Z.; Chen, X.; Yang, C. J. Chem. Commun. 2012, 48, 194.  doi: 10.1039/C1CC15412E

    38. [38]

      Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. Anal. Chem. 2012, 84, 4587.  doi: 10.1021/ac300721u

    39. [39]

      Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Angew. Chem., Int. Ed. 2012, 51, 4607.  doi: 10.1002/anie.201108302

    40. [40]

      Wu, Y.; Han, J.; Xue, P.; Xu, R.; Kang, Y. Nanoscale 2015, 7, 1753.  doi: 10.1039/C4NR05447D

    41. [41]

      Zhang, P.; He, Z.; Wang, C.; Chen, J.; Zhao, J.; Zhu, X.; Li, C.-Z.; Min, Q.; Zhu, J.-J. ACS Nano 2015, 9, 789.  doi: 10.1021/nn506309d

    42. [42]

      Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.  doi: 10.1021/jacs.5b10309

    43. [43]

      Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F. ACS Appl. Mater. Interfaces 2016, 8, 8998.  doi: 10.1021/acsami.6b01581

    44. [44]

      Li, J.; Li, D.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.  doi: 10.1021/acsami.6b13073

    45. [45]

      Zhang, Z.; Wang, Y.; Zhang, N.; Zhang, S. Chem. Sci. 2016, 7, 4184.  doi: 10.1039/C6SC00694A

    46. [46]

      Li, L.; Feng, J.; Liu, H.; Li, Q.; Tong, L.; Tang, B. Chem. Sci. 2016, 7, 1940.  doi: 10.1039/C5SC03909F

    47. [47]

      Choi, C. K. K.; Li, J.; Wei, K.; Xu, Y. J.; Ho, L. W. C.; Zhu, M.; To, K. K. W.; Choi, C. H. J.; Bian, L. J. Am. Chem. Soc. 2015, 137, 7337.  doi: 10.1021/jacs.5b01457

    48. [48]

      Li, S.; Xu, L.; Sun, M.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1606086.  doi: 10.1002/adma.v29.19

    49. [49]

      Lu, Q.; Ericson, D.; Song, Y.; Zhu, C.; Ye, R.; Liu, S.; Spernyak, J. A.; Du, D.; Li, H.; Wu, Y.; Lin, Y. ACS Appl. Mater. Interfaces 2017, 9, 23325.  doi: 10.1021/acsami.6b15387

    50. [50]

      Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H. K.; Kim, Y.-K.; Jang, H.; Lee, J. H.; Han, S. W.; Lee, Y.; Kim, V. N.; Min, D.-H. ACS Nano 2013, 7, 5882.  doi: 10.1021/nn401183s

    51. [51]

      Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147.  doi: 10.1021/nn9003814

    52. [52]

      Jayagopal, A.; Halfpenny, K. C.; Perez, J. W.; Wright, D. W. J. Am. Chem. Soc. 2010, 132, 9789.  doi: 10.1021/ja102585v

    53. [53]

      Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. J. Am. Chem. Soc. 2015, 137, 8340.  doi: 10.1021/jacs.5b04007

    54. [54]

      Chen, T.; Wu, C. S.; Jimenez, E.; Zhu, Z.; Dajac, J. G.; You, M.; Han, D.; Zhang, X.; Tan, W. Angew. Chem. Int. Ed. 2013, 52, 2012.  doi: 10.1002/anie.v52.7

    55. [55]

      Pan, W.; Yang, H.; Zhang, T.; Li, Y.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 6930.  doi: 10.1021/ac401405n

    56. [56]

      Li, N.; Yang, H.; Pan, W.; Diao, W.; Tang, B. Chem. Commun. 2014, 50, 7473.  doi: 10.1039/C4CC01009D

    57. [57]

      Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Ying, L.; Ou, M.; Wang, K. Chem. Commun. 2016, 52, 2346.  doi: 10.1039/C5CC09980C

    58. [58]

      Ou, M.; Huang, J.; Yang, X.; Quan, K.; Yang, Y.; Xie, N.; Wang, K. Chem. Sci. 2017, 8, 668.  doi: 10.1039/C6SC03162E

    59. [59]

      Wu, Z.; Liu, G.-Q.; Yang, X.-L.; Jiang, J.-H. J. Am. Chem. Soc. 2015, 137, 6829.  doi: 10.1021/jacs.5b01778

    60. [60]

      Shi, J.; Zhou, M.; Gong, A.; Li, Q.; Wu, Q.; Cheng, G. J.; Yang, M.; Sun, Y. Anal. Chem. 2016, 88, 1979.  doi: 10.1021/acs.analchem.5b03689

    61. [61]

      Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Ou, M.; Fang, H.; Wang, K. ACS Sens. 2016, 1, 1445.  doi: 10.1021/acssensors.6b00593

    62. [62]

      He, L.; Lu, D.-Q.; Liang, H.; Xie, S.; Luo, C.; Hu, M.; Xu, L.; Zhang, X.; Tan, W. ACS Nano 2017, 11, 4060.  doi: 10.1021/acsnano.7b00725

    63. [63]

      He, D.; He, X.; Yang, X.; Li, H.-W. Chem. Sci. 2017, 8, 2832.  doi: 10.1039/C6SC04633A

    64. [64]

      Zhang, R.; Gao, S.; Wang, Z.; Han, D.; Liu, L.; Ma, Q.; Tan, W.; Tian, J.; Chen, X. Adv. Funct. Mater. 2017, 27, 1701027.  doi: 10.1002/adfm.v27.31

    65. [65]

      Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Chem. Eur. J. 2011, 17, 11210.  doi: 10.1002/chem.201100658

    66. [66]

      Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Anal. Chem. 2012, 84, 2062.  doi: 10.1021/ac202648w

    67. [67]

      Wang, Z.; Zhang, R.; Wang, Z.; Wang, H.-F.; Wang, Y.; Zhao, J.; Wang, F.; Li, W.; Niu, G.; Kiesewetter, D. O.; Chen, X. ACS Nano 2014, 8, 12386.  doi: 10.1021/nn505047n

    68. [68]

      Pan, W.; Yang, H.; Li, N.; Yang, L.; Tang, B. Chem. Eur. J. 2015, 21, 6070.  doi: 10.1002/chem.v21.16

    69. [69]

      Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569.  doi: 10.1039/C5CC10147F

    70. [70]

      Tang, P.; Zheng, J.; Tang, J.; Ma, D.; Xu, W.; Li, J.; Cao, Z.; Yang, R. Chem. Commun. 2017, 53, 2507.  doi: 10.1039/C6CC09496A

    71. [71]

      Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.  doi: 10.1002/anie.201203767

    72. [72]

      Wang, S.; Xia, M.; Liu, J.; Zhang, S.; Zhang, X. ACS Sens. 2017, 2, 735.  doi: 10.1021/acssensors.7b00290

    73. [73]

      Pan, W.; Zhang, T.; Yang, H.; Diao, W.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 10581.  doi: 10.1021/ac402700s

    74. [74]

      Luan, M.; Li, N.; Pan, W.; Yang, L.; Yu, Z.; Tang, B. Chem. Commun. 2017, 53, 356.  doi: 10.1039/C6CC07605J

    75. [75]

      Yang, L.; Ren, Y.; Pan, W.; Yu, Z.; Tong, L.; Li, N.; Tang, B. Anal. Chem. 2016, 88, 11886.  doi: 10.1021/acs.analchem.6b03701

    76. [76]

      Yang, L.; Chen, Y.; Pan, W.; Wang, H.; Li, N.; Tang, B. Anal. Chem. 2017, 89, 6196.  doi: 10.1021/acs.analchem.7b01144

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    8. [8]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(79)
  • Abstract views(9080)
  • HTML views(1840)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return