Citation: Wang Yongjie, Wang Wei. Single Nanoparticle Sensing Based on Optical Microscopy[J]. Acta Chimica Sinica, ;2017, 75(11): 1061-1070. doi: 10.6023/A17070342 shu

Single Nanoparticle Sensing Based on Optical Microscopy

  • Corresponding author: Wang Wei, wei.wang@nju.edu.cn
  • Received Date: 27 July 2017
    Available Online: 18 November 2017

    Fund Project: the National Natural Science Foundation of China 21527807Project supported by the National Natural Science Foundation of China (No. 21527807)

Figures(7)

  • Single nanoparticle sensing (SNS) is an emerging research field which utilizes single nanoparticles as individual nano-sensors to acquire the qualitative and quantitative information of the analytes in a localized and microscopic sample environment. Both the molecular recognition and signal transduction take place at the surface of a single nanoparticle. Versatile kinds of optical microscopy, such as dark-field microscopy and fluorescence microscopy, are often applied to locating the nano-sensor, and to accessing and analyzing the optical signal it reports. Compared to traditional sensing mechanisms that rely on ensemble nanomaterials, SNS has demonstrated its excellent sensitivity down to single molecule detection by focusing in extremely small volumes in the range of aL~pL. Simultaneous monitoring on many individual nano-sensors in a nano-array further allows for high-throughput and multiplex analysis. More importantly, single nanoparticles can be easily introduced to microscopic and dynamic systems such as living cells to probe specific analytes with high temporal and spatial resolution while maintaining the excellent sensitivity. In this review, we begin with a brief introduction on the history and development of SNS, which is followed by its major features. We subsequently survey the recent progresses in this field in the past five years, focusing on the different sensing principles, single nanoparticle counting and single nanoparticle tracking. We finally provide our perspectives that further developments on nano-probes, optical imaging techniques and data analysis are critical to the growth and applications of SNS in broad fields.
  • 加载中
    1. [1]

      Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.  doi: 10.1021/cr980102w

    2. [2]

      Fadel, T. R.; Farrell, D. F.; Friedersdorf, L. E.; Griep, M. H.; Hoover, M. D.; Meador, M. A.; Meyyappan, M. ACS Sens. 2016, 1, 207.  doi: 10.1021/acssensors.5b00279

    3. [3]

      Kemling, J. W.; Qavi, A. J.; Bailey, R. C.; Suslick, K. S. J. Phys. Chem. Lett. 2011, 2, 2934.  doi: 10.1021/jz201147g

    4. [4]

      Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di, N. C. Chem. Rev. 2017, 117, 2517.  doi: 10.1021/acs.chemrev.6b00361

    5. [5]

      Janata, J.; Josowicz, M.; Vanýsek, P.; DeVaney, D. M. Anal. Chem. 1998, 70, 179.  doi: 10.1021/a1980010w

    6. [6]

      Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.  doi: 10.1021/cr2001178

    7. [7]

      Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Pure Appl. Chem. 1999, 71, 2333.

    8. [8]

      Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.  doi: 10.1038/383802a0

    9. [9]

      Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; And, C. A. M.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.  doi: 10.1021/ja972332i

    10. [10]

      Weiss, S. Science 1999, 283, 1676.  doi: 10.1126/science.283.5408.1676

    11. [11]

      Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999, 54, 3.  doi: 10.1016/S0925-4005(98)00321-9

    12. [12]

      Čtyroký, J.; Homola, J.; Lambeck, P. V.; Musa, S.; Hoekstra, H. J. W. M.; Harris, R. D.; Wilkinson, J. S.; Usievich, B.; Lyndin, N. M. Sens. Actuators, B 1999, 54, 66.  doi: 10.1016/S0925-4005(98)00328-1

    13. [13]

      Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.  doi: 10.1126/science.289.5485.1757

    14. [14]

      Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Phys. Rev. E 2000, 62, 4318.  doi: 10.1103/PhysRevE.62.4318

    15. [15]

      McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057.  doi: 10.1021/nl034372s

    16. [16]

      Liu, Y.; Huang, C. Z. ACS Nano 2013, 7, 11026.  doi: 10.1021/nn404694e

    17. [17]

      Sun, S.; Gao, M.; Lei, G.; Zou, H.; Ma, J.; Huang, C. Z. Nano. Res. 2016, 9, 1125.  doi: 10.1007/s12274-016-1007-z

    18. [18]

      Liu, Y.; Huang, C. Z. Chem. Commun. 2013, 49, 8262.  doi: 10.1039/c3cc43605e

    19. [19]

      Gao, P. F.; Gao, M. X.; Zou, H. Y.; Li, R. S.; Zhou, J.; Ma, J.; Wang, Q.; Liu, F.; Li, N.; Li, Y. F.; Huang, C. Z. Chem. Sci. 2016, 7, 5477.  doi: 10.1039/C6SC01055E

    20. [20]

      Zhou, J.; Lei, G.; Zheng, L. L.; Gao, P. F.; Huang, C. Z. Nanoscale 2016, 8, 11467.  doi: 10.1039/C6NR01089J

    21. [21]

      Wang, K.; Qiu, X.; Dong, C.; Ren, J. ChemBioChem 2007, 8, 1126.  doi: 10.1002/(ISSN)1439-7633

    22. [22]

      Lan, T.; Dong, C.; Huang, X.; Ren, J. Analyst 2011, 136, 4247.  doi: 10.1039/c1an15497d

    23. [23]

      Zhang, B.; Lan, T.; Huang, X.; Dong, C.; Ren, J. Anal. Chem. 2013, 85, 9433.  doi: 10.1021/ac4023956

    24. [24]

      Liu, H.; Dong, C.; Ren, J. J. Am. Chem. Soc. 2014, 136, 2775.  doi: 10.1021/ja410284j

    25. [25]

      Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X.; Lv, M.; Huang, Q.; Long, Y. T.; Willner, I. Angew. Chem. Int. Ed. 2011, 50, 6789.  doi: 10.1002/anie.201102151

    26. [26]

      Jin, H. Y.; Li, D. W.; Zhang, N.; Gu, Z.; Long, Y. T. ACS Appl. Mater. Interfaces 2015, 7, 12249.  doi: 10.1021/acsami.5b02744

    27. [27]

      Yu, R. J.; Sun, J. J.; Song, H.; Tian, J. Z.; Li, D. W.; Long, Y. T. Sensors 2017, 17, 530.  doi: 10.3390/s17030530

    28. [28]

      Xiao, L.; Qiao, Y. X.; He, Y.; Yeung, E. S. Anal. Chem. 2010, 82, 5268.  doi: 10.1021/ac1006848

    29. [29]

      Peng, Y.; Xiong, B.; Peng, L.; Li, H.; He, Y.; Yeung, E. S.; Chem, A. Anal. Chem. 2015, 87, 200.  doi: 10.1021/ac504061p

    30. [30]

      Yan, X.; Zhong, W.; Tang, A.; Schielke, E. G.; Hang, W.; Nolan, J. P. Anal. Chem. 2005, 77, 7673.  doi: 10.1021/ac0508797

    31. [31]

      Yang, L.; Zhu, S.; Hang, W.; Wu, L.; Yan, X. Anal. Chem. 2009, 81, 2555.  doi: 10.1021/ac802464a

    32. [32]

      Zhu, S.; Yang, L.; Long, Y.; Gao, M.; Huang, T.; Hang, W.; Yan, X. J. Am. Chem. Soc. 2010, 132, 12176.  doi: 10.1021/ja104052c

    33. [33]

      Ma, L.; Zhu, S.; Tian, Y.; Zhang, W.; Wang, S.; Chen, C.; Wu, L.; Yan, X. Angew. Chem. 2016, 128, 10239.

    34. [34]

      Zhu, S.; Ma, L.; Wang, S.; Chen, C.; Zhang, W.; Yang, L.; Hang, W.; Nolan, J. P.; Wu, L.; Yan, X. ACS Nano 2014, 8, 10998.  doi: 10.1021/nn505162u

    35. [35]

      Liu, S. L.; Zhang, Z. L.; Sun, E. Z.; Peng, J.; Xie, M.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Biomaterials 2011, 32, 7616.  doi: 10.1016/j.biomaterials.2011.06.046

    36. [36]

      Zhou, P.; Zheng, Z.; Lu, W.; Zhang, F.; Zhang, Z.; Pang, D.; Hu, B.; He, Z.; Wang, H. Angew. Chem. Int. Ed. 2012, 51, 670.  doi: 10.1002/anie.201105701

    37. [37]

      Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Zhao, H. S.; Liu, H.; Sun, E. Z.; Xiao, G. F.; Zhang, W.; Wang, H. Z.; Pang, D. W. ACS Nano 2012, 6, 141.  doi: 10.1021/nn2031353

    38. [38]

      Liu, S. L.; Li, J.; Zhang, Z. L.; Wang, Z. G.; Tian, Z. Q.; Wang, G. P.; Pang, D. W. Sci. Rep. 2013, 3, 2462.  doi: 10.1038/srep02462

    39. [39]

      Wen, L.; Lin, Y.; Zheng, Z. H.; Zhang, Z. L.; Zhang, L. J.; Wang, L. Y.; Wang, H. Z.; Pang, D. W. Biomaterials 2014, 35, 2295.  doi: 10.1016/j.biomaterials.2013.11.069

    40. [40]

      Zhang, C. Y.; Johnson, L. W. Angew. Chem. Int. Ed. 2007, 46, 3482.  doi: 10.1002/(ISSN)1521-3773

    41. [41]

      Zhang, C.; Johnson, L. W. Anal. Chem. 2009, 81, 3051.  doi: 10.1021/ac802737b

    42. [42]

      Zhang, C.; Hu, J. Anal. Chem. 2010, 82, 1921.  doi: 10.1021/ac9026675

    43. [43]

      Zhou, J.; Wang, Q.; Zhang, C. Y. J. Am. Chem. Soc. 2013, 135, 2056.  doi: 10.1021/ja3110329

    44. [44]

      Xu, Q.; Zhang, Y.; Zhang, C. Y. Chem. Commun. 2015, 51, 9121.  doi: 10.1039/C5CC02177D

    45. [45]

      Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.  doi: 10.1021/ja020393x

    46. [46]

      Vosgröne, T.; Meixner, A. J. ChemPhysChem 2005, 6, 154.  doi: 10.1002/cphc.v6:1

    47. [47]

      Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev. 2008, 37, 1052.  doi: 10.1039/b708459p

    48. [48]

      Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828.  doi: 10.1021/cr100313v

    49. [49]

      Chen, K. I.; Li, B. R.; Chen, Y. T. Nano Today 2011, 6, 131.  doi: 10.1016/j.nantod.2011.02.001

    50. [50]

      Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Anal. Chim. Acta 2011, 691, 6.  doi: 10.1016/j.aca.2011.02.025

    51. [51]

      Sapsford, K. E.; Tyner, K. M.; Dair, B. J.; Deschamps, J. R.; Medintz, I. L. Anal. Chem. 2011, 83, 4453.  doi: 10.1021/ac200853a

    52. [52]

      Chiang, C. K.; Chen, W. T.; Chang, H. T. Chem. Soc. Rev. 2011, 40, 1269.  doi: 10.1039/C0CS00050G

    53. [53]

      Chen, G.; Song, F.; Xiong, X.; Peng, X. Ind. Eng. Chem. Res. 2013, 52, 11228.  doi: 10.1021/ie303485n

    54. [54]

      Oja, S. M.; Wood, M.; Zhang, B. Anal. Chem. 2013, 85, 473.  doi: 10.1021/ac3031702

    55. [55]

      Lei, G.; He, Y. Acta Phys.-Chim. Sin. 2017, doi:10. 3866/PKU. WHXB201706301(in Chinese).  doi: 10.3866/PKU.WHXB201706301

    56. [56]

      Nie, S.; Emory, S. R. Science 1997, 275, 1102.  doi: 10.1126/science.275.5303.1102

    57. [57]

      Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Nat. Chem. 2013, 5, 602.  doi: 10.1038/nchem.1654

    58. [58]

      Hwang, W. S.; Truong, P. L.; Sang, J. S. Anal. Biochem. 2012, 421, 213.  doi: 10.1016/j.ab.2011.11.001

    59. [59]

      Blaber, M. G.; Henry, A.-I.; Bingham, J. M.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. C 2012, 116, 393.  doi: 10.1021/jp209466k

    60. [60]

      Fang, Y.; Wang, W.; Wo, X.; Luo, Y.; Yin, S.; Wang, Y.; Shan, X.; Tao, N. J. Am. Chem. Soc. 2014, 136, 12584.  doi: 10.1021/ja507097y

    61. [61]

      Xiao, L.; Wei, L.; Liu, C.; He, Y.; Yeung, E. S. Angew. Chem. Int. Ed. 2012, 51, 4181.  doi: 10.1002/anie.201108647

    62. [62]

      Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C. Nano Lett. 2012, 12, 1092.  doi: 10.1021/nl204496g

    63. [63]

      Sebba, D. S.; Watson, D. A.; Nolan, J. P. ACS Nano 2009, 3, 1477.  doi: 10.1021/nn9003346

    64. [64]

      Kruss, S.; Salem, D. P.; Vuković, L.; Lima, B.; Vander, E. E.; Boyden, E. S.; Strano, M. S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1789.  doi: 10.1073/pnas.1613541114

    65. [65]

      Liu, M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. Colloids Surf., B 2014, 124, 111.  doi: 10.1016/j.colsurfb.2014.06.001

    66. [66]

      Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.  doi: 10.1038/ncomms2722

    67. [67]

      Gu, Z.; Jing, C.; Ying, Y. L.; He, P.; Long, Y. T. Theranostics 2015, 5, 188.  doi: 10.7150/thno.10302

    68. [68]

      Weigel, A.; Sebesta, A.; Kukura, P. ACS Photonics 2014, 1, 848.  doi: 10.1021/ph500138u

    69. [69]

      Wolfbeis, O. S. Chem. Soc. Rev. 2015, 44, 4743.  doi: 10.1039/C4CS00392F

    70. [70]

      Liu, X.; Zhang, N.; Bing, T.; Shangguan, D. Anal. Chem. 2014, 86, 2289.  doi: 10.1021/ac404236y

    71. [71]

      Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B.; Chem, A. Anal. Chem. 2015, 87, 3678.  doi: 10.1021/ac503975x

    72. [72]

      Syal, K.; Wang, W.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Biosens. Bioelectron. 2015, 63, 131.  doi: 10.1016/j.bios.2014.06.069

    73. [73]

      Yuan, L.; Wang, X.; Fang, Y.; Liu, C.; Jiang, D.; Wo, X.; Wang, W.; Chen, H. Y. Anal. Chem. 2016, 88, 2321.  doi: 10.1021/acs.analchem.5b04244

    74. [74]

      Andrecka, J.; Spillane, K. M.; Ortega-Arroyo, J.; Kukura, P. ACS Nano 2013, 7, 10662.  doi: 10.1021/nn403367c

    75. [75]

      Piliarik, M.; Sandoghdar, V. Nat. Commun. 2014, 5, 4495.

    76. [76]

      Spindler, S.; Ehrig, J.; König, K.; Nowak, T.; Piliarik, M.; Stein, H. E.; Taylor, R. W.; Garanger, E.; Lecommandoux, S.; Alves, I. D. J. Phys. D:Appl. Phys. 2016, 49, 274002.  doi: 10.1088/0022-3727/49/27/274002

    77. [77]

      Mansuripur, M.; Peyghambarian, N.; Lau, P. C.; Norwood, R. A. Biomed. Opt. Express 2014, 5, 2420.  doi: 10.1364/BOE.5.002420

    78. [78]

      Kruss, S.; Landry, M. P.; Ende, E. V.; Lima, B. M. A.; Reuel, N. F.; Zhang, J.; Nelson, J.; Mu, B.; Hilmer, A.; Strano, M. J. Am. Chem. Soc. 2014, 136, 713.  doi: 10.1021/ja410433b

    79. [79]

      Guo, L.; Ferhan, A. R.; Lee, K.; Kim, D. H. Anal. Chem. 2011, 83, 2605.  doi: 10.1021/ac200432c

    80. [80]

      Wang, Y.; Kar, A.; Paterson, A.; Kourentzi, K.; Le, H.; Ruchhoeft, P.; Willson, R.; Bao, J. ACS Photonics 2014, 1, 241.  doi: 10.1021/ph400111u

    81. [81]

      Germain, M. E.; Knapp, M. J. J. Am. Chem. Soc. 2008, 130, 5422.  doi: 10.1021/ja800403k

    82. [82]

      Paolesse, R.; Monti, D.; Dini, F.; Di, N. C. Top. Curr. Chem. 2011, 300, 139.

    83. [83]

      Diehl, K. L.; Anslyn, E. V. Chem. Soc. Rev. 2013, 42, 8596.  doi: 10.1039/c3cs60136f

    84. [84]

      Haes, A. J.; Van Duyne, R. P. Anal. Bioanal. Chem. 2004, 379, 920.  doi: 10.1007/s00216-004-2708-9

    85. [85]

      Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522.  doi: 10.1021/jp0540656

    86. [86]

      Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Duyne, R. P. V. Nat. Mater. 2008, 7, 442.  doi: 10.1038/nmat2162

    87. [87]

      Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078.  doi: 10.1126/science.277.5329.1078

    88. [88]

      Liu, J.; Lu, Y. Angew. Chem. Int. Ed. 2005, 45, 90.

    89. [89]

      Lee, J. S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed 2007, 119, 4171.  doi: 10.1002/(ISSN)1521-3757

    90. [90]

      Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem. 2016, 88, 2119.  doi: 10.1021/acs.analchem.5b03653

    91. [91]

      Ma, J.; Zhan, L.; Li, R. S.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2017, 89, 8484.  doi: 10.1021/acs.analchem.7b02033

    92. [92]

      Mitra, A.; Ignatovich, F.; Novotny, L. Biosens. Bioelectron. 2012, 31, 499.  doi: 10.1016/j.bios.2011.11.025

    93. [93]

      Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat. Mater. 2005, 4, 826.  doi: 10.1038/nmat1508

    94. [94]

      Wang, L. J.; Yang, Y.; Zhang, C. Y. Anal. Chem. 2015, 87, 4696.  doi: 10.1021/ac504358q

    95. [95]

      Halpern, A. R.; Wood, J. B.; Wang, Y.; Corn, R. M. ACS Nano 2014, 8, 1022.  doi: 10.1021/nn405868e

    96. [96]

      Xiang, W.; Li, Z.; Jiang, Y.; Li, M.; Su, Y.; Wang, W.; Tao, N. Anal. Chem. 2016, 88, 2380.  doi: 10.1021/acs.analchem.5b04386

    97. [97]

      Vasco, F.; Andrea, H.; Wim, J. Pharm. Res. 2010, 27, 796.  doi: 10.1007/s11095-010-0073-2

    98. [98]

      Dragovic, R. A.; Gardiner, C.; Brooks, A. S.; Tannetta, D. S.; Ferguson, D. J.; Hole, P.; Carr, B.; Redman, C. W.; Harris, A. L.; Dobson, P. J. Nanomedicine 2011, 7, 780.  doi: 10.1016/j.nano.2011.04.003

    99. [99]

      Gross, J.; Sayle, S.; Karow, A. R.; Bakowsky, U.; Garidel, P. Eur. J. Pharm. Biopharm. 2016, 104, 30.  doi: 10.1016/j.ejpb.2016.04.013

    100. [100]

      Ramunas, J.; Montgomery, H. J.; Kelly, L.; Sukonnik, T.; Ellis, J.; Jervis, E. J. Mol. Ther. 2007, 15, 810.  doi: 10.1038/sj.mt.6300073

    101. [101]

      Bruckbauer, A.; James, P.; Zhou, D.; Yoon, J. W.; Excell, D.; Korchev, Y.; Jones, R.; Klenerman, D. Biophys. J. 2007, 93, 3120.  doi: 10.1529/biophysj.107.104737

    102. [102]

      Lew, M. D.; Thompson, M. A.; Badieirostami, M.; Moerner, W. E. Proc. SPIE. Int. Soc. Opt. Eng. 2010, 7571, 75710Z.

    103. [103]

      Wang, W.; Liu, J.; Li, C.; Zhang, J.; Liu, J.; Dong, A.; Kong, D. J. Mater. Chem. B 2014, 2, 4185.

    104. [104]

      Yu, J. C.; Chen, Y. L.; Zhang, Y. Q.; Yao, X. K.; Qian, C. G.; Huang, J.; Zhu, S.; Jiang, X. Q.; Shen, Q. D.; Gu, Z. Chem. Commun. 2014, 50, 4699.  doi: 10.1039/c3cc49870k

    105. [105]

      Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.  doi: 10.1126/science.1077194

    106. [106]

      Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301.  doi: 10.1021/ja037088b

    107. [107]

      Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435.  doi: 10.1038/nmat1390

    108. [108]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.  doi: 10.1126/science.1104274

    109. [109]

      Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763.  doi: 10.1038/nmeth.1248

    110. [110]

      Dahan, M.; Lévi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442.  doi: 10.1126/science.1088525

    111. [111]

      Chang, J.; Rosenthal, S. J. ACS Chem. Neurosci. 2012, 3, 737.  doi: 10.1021/cn3000845

    112. [112]

      Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Nat. Mater. 2003, 2, 229.  doi: 10.1038/nmat852

    113. [113]

      Eustis, S.; Elsayed, M. A. Chem. Soc. Rev. 2006, 35, 209.  doi: 10.1039/B514191E

    114. [114]

      Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Nano Lett. 2007, 7, 496.  doi: 10.1021/nl062901x

    115. [115]

      Xiao, L.; Yeung, E. S. Annu. Rev. Anal. Chem. 2014, 7, 89.  doi: 10.1146/annurev-anchem-071213-020125

    116. [116]

      Yan, G.; Sun, W.; Wang, G.; Jeftinija, K.; Jeftinija, S.; Fang, N. Nat. Commun. 2012, 3, 1030.  doi: 10.1038/ncomms2037

    117. [117]

      Stender, A. S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M. W.; Smith, E. A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J. X. Chem. Rev. 2013, 113, 2469.  doi: 10.1021/cr300336e

    118. [118]

      Ji, W. H.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. J. Am. Chem. Soc. 2014, 136, 1398.  doi: 10.1021/ja409011y

    119. [119]

      Chang, W. S.; Ha, J. W.; Slaughter, L. S.; Link, S. Proc. Nat. Acad. Sci. U. S. A. 2010, 107, 2781.  doi: 10.1073/pnas.0910127107

    120. [120]

      Yuan, T. L.; Jiang, Y. Y.; Wang, W. Prog. Chem. 2016, 28, 607. (in Chinese).  doi: 10.7536/PC160111

    121. [121]

      Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L.; Swihart, M. T.; He, G. S.; Cui, Y.; Prasad, P. N. Nanotechnology 2010, 21, 285106.  doi: 10.1088/0957-4484/21/28/285106

    122. [122]

      Zhao, T.; Yu, K.; Li, L.; Zhang, T.; Guan, Z.; Gao, N.; Yuan, P.; Li, S.; Yao, S. Q.; Xu, Q. H. ACS Appl. Mater. Interfaces 2014, 6, 2700.  doi: 10.1021/am405214w

    123. [123]

      Xiao, L.; Qiao, Y.; He, Y.; Yeung, E. S. J. Am. Chem. Soc. 2011, 133, 10638.  doi: 10.1021/ja203289m

    124. [124]

      Dewitt, M. A.; Yildiz, A. Science 2012, 335, 221.  doi: 10.1126/science.1215804

    125. [125]

      Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z. P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X. E.; Cui, Z. ACS Nano 2017, 11, 3890.  doi: 10.1021/acsnano.7b00275

    126. [126]

      Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.  doi: 10.1002/anie.201203767

    127. [127]

      Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. Chem. Sci. 2013, 4, 1079.  doi: 10.1039/c2sc22076h

    128. [128]

      Xie, T.; Jing, C.; Long, Y. T. Analyst 2017, 142, 409.  doi: 10.1039/C6AN01852A

    129. [129]

      Ma, W.; Ma, H.; Chen, J. F.; Peng, Y. Y.; Yang, Z. Y.; Wang, H. F.; Ying, Y. L.; Tian, H.; Long, Y. T. Chem. Sci. 2017, 8, 1854.  doi: 10.1039/C6SC04582K

    130. [130]

      Li, M.; Shi, L.; Xie, T.; Jing, C.; Xiu, G.; Long, Y. T. ACS Sens. 2017, 2, 263.  doi: 10.1021/acssensors.6b00769

    131. [131]

      Liu, Q.; Ma, C.; Liu, X. P.; Wei, Y. P.; Mao, C. J.; Zhu, J. J. Biosens. Bioelectron. 2017, 92, 273.  doi: 10.1016/j.bios.2017.02.027

    132. [132]

      Chen, Z.; Li, J.; Chen, X.; Cao, J.; Zhang, J.; Min, Q.; Zhu, J. J. J. Am. Chem. Soc. 2015, 137, 1903.  doi: 10.1021/ja5112628

    133. [133]

      Zhao, M.; Fan, G. C.; Chen, J. J.; Shi, J. J.; Zhu, J. J. Anal. Chem. 2015, 87, 12340.  doi: 10.1021/acs.analchem.5b03721

    134. [134]

      Fan, G. C.; Zhao, M.; Zhu, H.; Shi, J. J.; Zhang, J. R.; Zhu, J. J. J. Phys. Chem. C 2015, 120, 15657.

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(28)
  • Abstract views(4438)
  • HTML views(293)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return