Citation: Qin Tianyi, Zeng Yi, Chen Jinping, Yu Tianjun, Li Yi. Progress in Organic Fluorescent Thermometers[J]. Acta Chimica Sinica, ;2017, 75(12): 1164-1172. doi: 10.6023/A17070341 shu

Progress in Organic Fluorescent Thermometers

  • Corresponding author: Zeng Yi, yili@mail.ipc.ac.cn Li Yi, zengyi@mail.ipc.ac.cn
  • Received Date: 27 July 2017
    Available Online: 28 December 2017

    Fund Project: the 973 Program 2013CB834703the 973 Program 2013CB834505the National Natural Science Foundation of China 21233011Project supported by the National Natural Science Foundation of China (No. 21233011) and the 973 Program (Nos. 2013CB834703 and 2013CB834505)

Figures(13)

  • Temperature is a basic physical parameter. Accurate measurement of temperature is of importance to scientific research and to industry production and life. Fluorescent temperature sensing, as a new method for temperature measurement, has received much attention because of its high resolution, fast response and observation with bear eyes, etc. Organic fluorescence probes are firstly used in fluorescent temperature sensing due to the versatility of structures, easier modification, and the consequent multiple spectral responses. The fluorescent thermometers can be applied in the temperature sensing of large area, microfluids, biological systems and so on, which make them attractive in the field of fluorescent probes research. In recent years, fluorescent thermometers based on organic fluorescence probes have made remarkable progress. Two major kinds of organic fluorescence thermometers are classified in this review based on the response of fluorescence wavelength, one is the single-wavelength response type, and the other is the ratiometric one. For the single-wavelength type, there are thermal-quenching and thermal-enhancing fluorescence thermometers based on the temperature-dependent trend of emission intensity. At the earlier stage, organic chromophores with high fluorescence quantum yields are adopted as the thermal quenching fluorescence thermometer, and recently a series of conformation-regulated organic thermometers based on dendritic structure and aggregation-induced emission chromophore was developed. Thermal response macromolecules including PNIPAM, PEG and DNA are widely used to create thermal responsive microenvironment to regulate chromophore emission, and then develop thermal-enhancing fluorescence thermometers. Ratiometric fluorescence thermometers show better sensitivity and accuracy than single-wavelength ones due to their self-correction property based on the different thermal-response of emission at two wavelengths. Several kinds of ratiometric sensing systems have been developed, which are based on dye-copolymerized/doped polymer systems, monomer-excimer ratiometric emission, chromophores with thermal transition of local excited state and twisted intramolecular charge transfer state, and chromophores with thermal-induced crystal transfer. In this review, recent advances of organic fluorescence thermometers mentioned above will be presented and the challenges and the future development will be discussed.
  • 加载中
    1. [1]

      Kennedy, J. J. Rev Geophys. 2014, 52, 1.  doi: 10.1002/rog.v52.1

    2. [2]

      Ross-Pinnock, D.; Maropoulos, P. G. Proc. Inst. Mech. Eng. B 2016, 230, 793.

    3. [3]

      Rolls, K.; Armstrong, K.; Keating, L.; Wrightson, D.; Walker, S.; Masters, J. Aust. Crit. Care 2014, 27, 49.

    4. [4]

      Sarua, A.; Ji, H. F.; Kuball, M.; Uren, M. J.; Martin, T.; Hilton, K. P.; Balmer, R. S. IEEE T Electron. Dev. 2006, 53, 2438.  doi: 10.1109/TED.2006.882274

    5. [5]

      Ring, E. F. J. Infrared Phys. Technol. 2007, 49, 297.  doi: 10.1016/j.infrared.2006.06.029

    6. [6]

      Lira, I.; Santos, P. R. Metrologia 1999, 36, 415.  doi: 10.1088/0026-1394/36/5/3

    7. [7]

      Klason, P.; Holmsten, M.; Andersson, A.; Lau, P.; Kok, G. J. P. Temperature: Its Measurement and Control in Science and Industry, Vol. 8, AIP Publishing, Los Angeles, California, USA, 2013, p. 987.

    8. [8]

      Revil, A.; Meyer, C. D.; Niu, Q. Geophysics 2016, 81, E243.  doi: 10.1190/geo2015-0281.1

    9. [9]

      Bennet, M. A.; Richardson, P. R.; Arlt, J.; McCarthy, A.; Buller, G. S.; Jones, A. C. Lab Chip 2011, 11, 3821.  doi: 10.1039/c1lc20391f

    10. [10]

      Marciniak, L.; Bednarkiewicz, A.; Kowalska, D.; Strek, W. J. Mater. Chem. C 2016, 4, 5559.  doi: 10.1039/C6TC01484D

    11. [11]

      Lou, J. F.; Finegan, T. M.; Mohsen, P.; Hatton, T. A.; Laibinis, P. E. Rev. Anal. Chem. 1999, 18, 235.

    12. [12]

      Song, Q. S.; Zhou, W.; Wu, X. M.; Wu, F. Acta Chim. Sinica 2016, 74, 435.
       

    13. [13]

      Wang, X. D.; Song, X. H.; He, C. Y.; Yang, C. J.; Chen, G. N.; Chen, X. Anal. Chem. 2011, 83, 2434.  doi: 10.1021/ac200196y

    14. [14]

      Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Nano Lett. 2010, 10, 3670.  doi: 10.1021/nl102135k

    15. [15]

      Barilero, T.; Le Saux, T.; Gosse, C.; Jullien, L. Anal. Chem. 2009, 81, 7988.  doi: 10.1021/ac901027f

    16. [16]

      McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Chem. Mater. 2013, 25, 1283.  doi: 10.1021/cm304034s

    17. [17]

      Gosse, C.; Bergaud, C.; Low, P. Top Appl. Phys. 2009, 118, 301.  doi: 10.1007/978-3-642-04258-4

    18. [18]

      Heyes, A. L.; Seefeldt, S.; Feist, J. P. Opt. Laser Technol. 2006, 38, 257.  doi: 10.1016/j.optlastec.2005.06.012

    19. [19]

      Ishiwada, N.; Ueda, T.; Yokomori, T. Luminescence 2011, 26, 381.  doi: 10.1002/bio.v26.6

    20. [20]

      Cao, C.; Liu, X. G.; Qiao, Q. L.; Zhao, M.; Yin, W. T.; Mao, D. Q.; Zhang, H.; Xu, Z. C. Chem. Commun. 2014, 50, 15811.  doi: 10.1039/C4CC08010F

    21. [21]

      Hsia, C. H.; Wuttig, A.; Yang, H. ACS Nano 2011, 5, 9511.  doi: 10.1021/nn2025622

    22. [22]

      Haro-Gonzalez, P.; Martinez-Maestro, L.; Martin, I. R.; Garcia-Sole, J.; Jaque, D. Small 2012, 8, 2652.  doi: 10.1002/smll.v8.17

    23. [23]

      Kalytchuk, S.; Polakova, K.; Wang, Y.; Froning, J. P.; Cepe, K.; Rogach, A. L.; Zboril, R. ACS Nano 2017, 11, 1432.  doi: 10.1021/acsnano.6b06670

    24. [24]

      Li, H.; Zhang, Y. D.; Shao, L.; Htwe, Z.; Yuan, P. Opt. Mater. Express 2017, 7, 1077.  doi: 10.1364/OME.7.001077

    25. [25]

      Deepankumar, K.; Nadarajan, S. P.; Bae, D. H.; Baek, K. H.; Choi, K. Y.; Yun, H. Biotechnol. Bioproc. E 2015, 20, 67.  doi: 10.1007/s12257-014-0456-z

    26. [26]

      Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42, 7834.  doi: 10.1039/c3cs60102a

    27. [27]

      Low, P.; Kim, B.; Takama, N.; Bergaud, C. Small 2008, 4, 908.  doi: 10.1002/smll.v4:7

    28. [28]

      Jung, W.; Kim, Y. W.; Yim, D.; Yoo, J. Y. Sensor Actuators, A-Phys. 2011, 171, 228.  doi: 10.1016/j.sna.2011.06.025

    29. [29]

      Guan, X. L.; Liu, X. Y.; Su, Z. X.; Liu, P. React. Funct. Polym. 2006, 66, 1227.  doi: 10.1016/j.reactfunctpolym.2006.03.005

    30. [30]

      Chapman, C. F.; Liu, Y.; Sonek, G. J.; Tromberg, B. J. Photochem. Photobiol. 1995, 62, 416.  doi: 10.1111/php.1995.62.issue-3

    31. [31]

      Pais, V. F.; Lassaletta, J. M.; Fernandez, R.; El-Sheshtawy, H. S.; Ros, A.; Pischel, U. Chem.-Eur. J. 2014, 20, 7638.  doi: 10.1002/chem.201402027

    32. [32]

      Zeng, Y.; Li, P.; Liu, X. Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Polym. Chem.-UK 2014, 5, 5978.  doi: 10.1039/C4PY00714J

    33. [33]

      Arai, S.; Lee, S. C.; Zhai, D. T.; Suzuki, M.; Chang, Y. T. Sci. Rep.-UK 2014, 4, 6701.

    34. [34]

      Arai, S.; Suzuki, M.; Park, S. J.; Yoo, J. S.; Wang, L.; Kang, N. Y.; Ha, H. H.; Chang, Y. T. Chem. Commun. 2015, 51, 8044.  doi: 10.1039/C5CC01088H

    35. [35]

      Wang, H.; Wu, Y. Q.; Tao, P.; Fan, X.; Kuang, G. C. Chem.-Eur. J. 2014, 20, 16634.  doi: 10.1002/chem.201404292

    36. [36]

      Wang, H.; Wu, Y. Q.; Shi, Y. L.; Tao, P.; Fan, X.; Su, X. Y.; Kuang, G. C. Chem.-Eur. J. 2015, 21, 3219.  doi: 10.1002/chem.v21.8

    37. [37]

      Ke, G. L.; Wang, C. M.; Ge, Y.; Zheng, N. F.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908.  doi: 10.1021/ja3082439

    38. [38]

      Ebrahimi, S.; Akhlaghi, Y.; Kompany-Zareh, M.; Rinnan, A. ACS Nano 2014, 8, 10372.  doi: 10.1021/nn5036944

    39. [39]

      Guo, Y. Z.; Yu, X.; Xue, W. W.; Huang, S. S.; Dong, J.; Wei, L. H.; Maroncelli, M.; Li, H. P. Chem. Eng. J. 2014, 240, 319.  doi: 10.1016/j.cej.2013.11.081

    40. [40]

      Zhou, H.; Liu, F.; Wang, X. B.; Yan, H.; Song, J.; Ye, Q.; Tang, B. Z.; Xu, J. W. J. Mater. Chem. C 2015, 3, 5490.  doi: 10.1039/C5TC00752F

    41. [41]

      Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Anal. Chem. 2003, 75, 5926.  doi: 10.1021/ac0346914

    42. [42]

      Shiraishi, Y.; Miyarnoto, R.; Hirai, T. Langmuir 2008, 24, 4273.  doi: 10.1021/la703890n

    43. [43]

      Coppeta, J.; Rogers, C. Exp. Fluids 1998, 25, 1.  doi: 10.1007/s003480050202

    44. [44]

      Chen, C. Y.; Chen, C. T. Chem. Commun. 2011, 47, 994.  doi: 10.1039/C0CC04450D

    45. [45]

      Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Nanoscale 2012, 4, 4799.  doi: 10.1039/c2nr30663h

    46. [46]

      Qiao, J.; Chen, C. F.; Qi, L.; Liu, M. R.; Dong, P.; Jiang, Q.; Yang, X. Z.; Mu, X. Y.; Mao, L. Q. J. Mater. Chem. B 2014, 2, 7544.  doi: 10.1039/C4TB01154F

    47. [47]

      Uchiyama, S.; Tsuji, T.; Ikado, K.; Yoshida, A.; Kawamoto, K.; Hayashi, T.; Inada, N. Analyst 2015, 140, 4498.  doi: 10.1039/C5AN00420A

    48. [48]

      Wu, Y. S.; Liu, J. J.; Ma, J. W.; Liu, Y. C.; Wang, Y.; Wu, D. C. ACS Appl. Mater. Interfaces 2016, 8, 14396.  doi: 10.1021/acsami.6b03366

    49. [49]

      Ito, A.; Ishizaka, S.; Kitamura, N. Phys. Chem. Chem. Phys. 2010, 12, 6641.  doi: 10.1039/b924176k

    50. [50]

      Braun, D.; Rettig, W. Chem. Phys. 1994, 180, 231.  doi: 10.1016/0301-0104(93)E0423-S

    51. [51]

      Xia, T. K.; Wang, L. L.; Qu, Y.; Rui, Y. C.; Cao, J.; Hu, Y.; Yang, J.; Wu, J. W.; Xu, J. L. J. Mater. Chem. C 2016, 4, 5696.  doi: 10.1039/C6TC01241H

    52. [52]

      Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. A. Angew. Chem., Int. Ed. 2011, 50, 8072.  doi: 10.1002/anie.v50.35

    53. [53]

      Feng, J.; Xiong, L.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Adv. Func. Mater. 2013, 23, 340.  doi: 10.1002/adfm.201201712

    54. [54]

      Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694.  doi: 10.1021/acs.analchem.5b00887

    55. [55]

      Liu, X.; Li, S. Y.; Feng, J.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 2778.  doi: 10.1039/C3CC49147A

    56. [56]

      Lou, J. F.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262.  doi: 10.1021/ac960745g

    57. [57]

      Kaushlendra, K.; Asha, S. K. J. Phys. Chem. B 2014, 118, 4951.  doi: 10.1021/jp501346b

    58. [58]

      Zeng, Y.; Li, Y. Y.; Li, M.; Yang, G. Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 9100.  doi: 10.1021/ja902998g

    59. [59]

      Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 99.
       

    60. [60]

      Mutai, T.; Satou, H.; Araki, K. Nat. Mater. 2005, 4, 685.  doi: 10.1038/nmat1454

    61. [61]

      Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Commun. 2012, 48, 10895.  doi: 10.1039/c2cc36263e

    62. [62]

      Zhu, Q. H.; Yang, W. J.; Zheng, S. C.; Sung, H. H. Y.; Williams, I. D.; Liu, S. W.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 7383.  doi: 10.1039/C6TC01887D

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(63)
  • Abstract views(2502)
  • HTML views(589)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return