Citation: Guo Xiaoling, Chen Xiao, Su Dangsheng, Liang Changhai. Preparation of Ni/C Core-shell Nanoparticles through MOF Pyrolysis for Phenylacetylene Hydrogenation Reaction[J]. Acta Chimica Sinica, ;2018, 76(1): 22-29. doi: 10.6023/A17070339 shu

Preparation of Ni/C Core-shell Nanoparticles through MOF Pyrolysis for Phenylacetylene Hydrogenation Reaction

  • Corresponding author: Liang Changhai, changhai@dlut.edu.cn
  • Received Date: 26 July 2017
    Available Online: 23 January 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21373038, 21403026), the Natural Science Foundation of Liaoning Province in China (No. 2015021014), and the Fundamental Research Funds for the Central Universities (No. DUT16RC(4)03)the Fundamental Research Funds for the Central Universities DUT16RC(4)03the National Natural Science Foundation of China 21373038the Natural Science Foundation of Liaoning Province in China 2015021014the National Natural Science Foundation of China 21403026

Figures(10)

  • A series of Ni/C core-shell nano catalysts with abundant mesoporous and uniform size were prepared by Ni-MOF-74 pyrolysis. The Ni-MOF-74 was synthesized via hydrothermal method with nickel acetate and 2, 5-dihydroxyterephthalic acid (DHTA) as raw materials. The pyrolysis process was carried out in a tube furnace under Argon (Ar) atmosphere with a heating rate of 2℃/min. Completed pyrolytic product Ni/C can be obtained by extending the pyrolysis time (6 h) at 400℃ or increasing the pyrolysis temperature (≥ 500℃) based on the TG result. Moreover, the particle size of Ni/C varied with pyrolysis temperature from 3 nm (500℃) to 17 nm (800℃). The TEM images and Ar ion sputtering XPS indicated a core-shell structure of the pyrolysis product. Nickel species can be stable in the form of nickel (Ni0) due to the electronic properties regulating and confinement effect of the carbon shell. Moreover, the carbon shell greatly weaken the interaction between particles, which is favorable for the dispersion of the catalyst in the reaction system. H2-TPR results show that the interaction between nickel and amorphous carbon increases with the pyrolysis temperature, which is unfavorable to the interaction between Ni species and the reactant. The phenylacetylene (PA) hydrogenation reaction was carried out with 0.2 g catalyst, 10 mL of 1 mol/L ethanolic phenylacetylene solution and 1.0 MPa H2 in a 50 mL high-pressure autoclave under 50℃. Ni/C exhibits excellent catalytic activity and recyclability in phenylacetylene (PA) hydrogenation. In addition, we compared the activity of Ni/C with several reported catalyst system and found their activity increases in the order of Ni, NiSix, supported Ni2Si, Ni/C, Pd and Pt. With an activity of up to 0.833 mmol·min-1·gcat.-1 at 50℃ (Ni/C-400-6, Ni/C-500-2), Ni/C is the most promising transition metal catalyst that can be comparable with noble metal.
  • 加载中
    1. [1]

      (a) Wu, Z. L.; Cravotto, G.; Gaudino, E. C.; Giacomino, A.; Medlock, J.; Bonrath, W. Ultrason. Sonochem. 2017, 35, 664. (b) Yang, K. X.; Chen, X.; Guan, J. C.; Liang, C. H. Catal. Today 2015, 246, 176.

    2. [2]

      Wang, B.; Sun, L. M.; Ma, H. W.; Zheng, Y. D.; Hu, X. L.; Yang, H. Q.; Liang, S. Q. Contemp. Chem. Ind. 2015, 2048.  doi: 10.3969/j.issn.1671-0460.2015.08.103

    3. [3]

      Berenblyum, A. S.; Al-Wadhaf, H. A.; Katsman, E. A. Petrol. Chem. 2015, 55, 118.  doi: 10.1134/S0965544115020048

    4. [4]

      (a) Mastalir, Á.; Király, Z. J. Catal. 2003, 220, 372; (b) Erokhin, A. V.; Lokteva, E. S.; Yermakov, A. Y.; Boukhvalov, D. W.; Maslakov, K. I.; Golubina, E. V.; Uimin, M. A. Carbon 2014, 74, 291.

    5. [5]

      Su, D. S.; Perathoner, S.; Centi, G. Chem. Rev. 2013, 113, 5782.  doi: 10.1021/cr300367d

    6. [6]

      Li, S. Q.; Liu, J. T.; Sun, F. X.; Wang, W. M.; Cheng, Y. L. CN101475438, 2009[Chem. Abstr. 2009, 35, 840049].

    7. [7]

      Beyhaghi, M.; Kiani-Rashid, A. R.; Kashefi, M.; Khaki, J. V.; Jonsson, S. Appl. Surf. Sci. 2015, 344, 1.  doi: 10.1016/j.apsusc.2015.01.186

    8. [8]

      (a) Cho, G. S.; Lim, J. K.; Choe, K. H.; Lee, W. Mater. Sci. Forum 2010, 658, 360; (b) Wu, C. Z.; Yao, X. D.; Zhang, H. Int. J. Hydrogen Energy 2010, 35, 247.

    9. [9]

      Manukyan, A.; Mirzakhanyan, A.; Sajti, L.; Khachaturyan, R.; Kaniukov, E.; Lobanovsky, L.; Sharoyan, E. Nano 2015, 10, 7.
       

    10. [10]

      Meng, Z. Q.; Li, X. B.; Xiong, Y. J.; Zhan, J. T. Nonferr. Metal. Soc. 2012, 22, 2719.  doi: 10.1016/S1003-6326(11)61523-9

    11. [11]

      Li, X.; Cheng, H.; Fan, J. Powder Metall. Technol. 2009, 27, 142.

    12. [12]

      Shen, K.; Chen, X.; Chen, J.; Li, Y. ACS Catal. 2016, 6, 5887.  doi: 10.1021/acscatal.6b01222

    13. [13]

      Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249.  doi: 10.1002/adma.201002854

    14. [14]

      Dietzel, P. D.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvag, H. Chem. Commun. 2006, 959.
       

    15. [15]

      Dietzel, P. D.; Morita, Y.; Blom, R.; Fjellvag, H. Angew. Chem., Int. Ed. 2005, 44, 6354.  doi: 10.1002/(ISSN)1521-3773

    16. [16]

      Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. Chem. Eng. Sci. 2011, 66, 163.  doi: 10.1016/j.ces.2010.10.002

    17. [17]

      An, C.; Liu, G.; Li, L.; Wang, Y.; Chen, C.; Wang, Y.; Jiao, L.; Yuan, H. Nanoscale 2014, 6, 3223.  doi: 10.1039/c3nr05607d

    18. [18]

      Zhou, L.; Zhang, T.; Tao, Z.; Chen, J. Nano Res. 2014, 7, 774.  doi: 10.1007/s12274-014-0438-7

    19. [19]

      (a) Paul, R.; Sharma, M. K.; Chatterjee, R.; Hussain, S.; Bhar, R.; Pal, A. K. Appl. Surf. Sci. 2012, 258, 5850; (b) Wang, H.; Cao, Y.; Zou, G.; Yi, Q.; Guo, J.; Gao, L. ACS Appl. Mater. Interfaces 2017, 9, 60; (c) Kovacs, G. J.; Bertoti, I.; Radnoczi, G. Thin Solid Films 2008, 516, 7942.

    20. [20]

      (a) Leng, Y. G.; Shao, H. Y.; Wang, Y. T.; Suzuki, M.; Li, X. G. J. Nanosci. Nanotechnol. 2006, 6, 221; (b) Hasegawa, M.; Sugawara, K.; Suto, R.; Sambonsuge, S.; Teraoka, Y.; Yoshigoe, A.; Filimonov, S.; Fukidome, H.; Suemitsu, M. Nanoscale Res. Lett. 2015, 10, 421.

    21. [21]

      Golubina, E. V.; Lokteva, E. S.; Erokhin, A. V.; Veligzhanin, A. A.; Zubavichus, Y. V.; Likholobov, V. A.; Lunin, V. V. J. Catal. 2016, 344, 90.  doi: 10.1016/j.jcat.2016.08.017

    22. [22]

      Guo, J. X.; Liang, J.; Chu, Y. H.; Sun, M. C.; Yin, H. Q.; Li, J. J. Appl. Catal. A: Gen. 2012, 421, 142.
       

    23. [23]

      Park, S. J.; Jung, W. Y. J. Colloid Interface Sci. 2002, 250, 93.  doi: 10.1006/jcis.2002.8309

    24. [24]

      Wang, Z. M.; Yamashita, N.; Wang, Z. X.; Hoshinoo, K.; Kanoh, H. J. Colloid Interface Sci. 2004, 276, 143.  doi: 10.1016/j.jcis.2004.03.017

    25. [25]

      Ortega, K. F.; Arrigo, R.; Frank, B.; Schlogl, R.; Trunschke, A. Chem. Mater. 2016, 28, 6826.  doi: 10.1021/acs.chemmater.6b01594

    26. [26]

      Oswald, S.; Bruckner, W. Surf. Interface Anal. 2004, 36, 17.  doi: 10.1002/(ISSN)1096-9918

    27. [27]

      Carraro, P. M.; Blanco, A. A. G.; Soria, F. A.; Lener, G.; Sapag, K.; Eimer, G. A.; Oliva, M. I. Microporous Mesoporous Mater. 2016, 231, 31.  doi: 10.1016/j.micromeso.2016.05.017

    28. [28]

      Cheng, C. B.; Shen, D. K.; Xiao, R.; Wu, C. F. Fuel 2017, 189, 419.  doi: 10.1016/j.fuel.2016.10.122

    29. [29]

      Rodriguez-Gomez, A.; Caballero, A. ChemNanoMat 2017, 3, 94.  doi: 10.1002/cnma.201600297

    30. [30]

      Liu, L. J.; Lou, H.; Chen, M. Int. J. Hydrogen Energy 2016, 41, 14721.  doi: 10.1016/j.ijhydene.2016.05.188

    31. [31]

      Hu, D.; Gao, J.; Ping, Y.; Jia, L.; Gunawan, P.; Zhong, Z.; Xu, G.; Gu, F.; Su, F. Ind. Eng. Chem. Res. 2012, 51, 4875.  doi: 10.1021/ie300049f

    32. [32]

      Yang, K. X.; Chen, X.; Wang, L.; Zhang, L. L.; Jin, S. H.; Liang, C. H. ChemCatChem 2017, 9, 1337.  doi: 10.1002/cctc.201601653

    33. [33]

      (a) Carturan, G.; Facchin, G.; Gottardi, V.; Guglielmi, M.; Navazio, G. J. Non-Cryst. Solids 1982, 48, 219; (b) Costa, M.; Pelagatti, P.; Pelizzi, C.; Rogolino, D. J. Mol. Catal. A: Chem. 2002, 178, 21.

    34. [34]

      Chen, X.; Li, M.; Guan, J.; Wang, X.; Williams, C. T.; Liang, C. Ind. Eng. Chem. Res 2012, 51, 3604.  doi: 10.1021/ie202227j

    35. [35]

      Kulikov, L. A.; Terenina, M. V.; Kryazheva, I. Y.; Karakhanov, E. A. Petro. Chem. 2017, 57, 222.  doi: 10.1134/S0965544117020177

    36. [36]

      Zhang, W.; Wang, F. S.; Li, X. L.; Liu, Y. S.; Liu, Y.; Ma, J. T. Appl. Surf. Sci. 2017, 404, 398.  doi: 10.1016/j.apsusc.2017.01.298

    37. [37]

      Boronoev, M. P.; Subbotina, E. S.; Kurmaeva, A. A.; Kardasheva, Y. S.; Maksimov, A. L.; Karakhanov, E. A. Petrol. Chem. 2016, 56, 109.  doi: 10.1134/S0965544116020055

    38. [38]

      (a) Chen, W.; Pan, X. L.; Bao, X. H. J. Am. Chem. Soc. 2007, 129, 7421; (b) Chen, W.; Pan, X. L.; Willinger, M. G.; Su, D. S.; Bao, X. H. J. Am. Chem. Soc. 2006, 128, 3136.

    39. [39]

      Fu, Q.; Bao, X. H. Chin. J. Catal. 2015, 36, 517.  doi: 10.1016/S1872-2067(15)60828-2

    40. [40]

      Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Angew. Chem. Int. Ed. 2015, 54, 2100.  doi: 10.1002/anie.201409524

    41. [41]

      Chen, X.; Li, M.; Guan, J.; Wang, X.; Williams, C. T.; Liang, C. Ind. Eng. Chem. Res. 2012, 51, 3604.  doi: 10.1021/ie202227j

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    6. [6]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(53)
  • Abstract views(3972)
  • HTML views(976)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return