Citation: Jin Tongyu, An Yu, Zhang Fan, He Pingang. Real-time Monitoring Skin Cell Alignment on Nano-grooves Using Electric Cell-substrate Impedance Sensing (ECIS)[J]. Acta Chimica Sinica, ;2017, 75(11): 1115-1120. doi: 10.6023/A17070337 shu

Real-time Monitoring Skin Cell Alignment on Nano-grooves Using Electric Cell-substrate Impedance Sensing (ECIS)

  • Corresponding author: Zhang Fan, fzhang@chem.ecnu.edu.cn He Pingang, pghe@chem.ecnu.edu.cn
  • Received Date: 26 July 2017
    Available Online: 8 November 2017

    Fund Project: the National Natural Science Foundation of China 21405049Project supported by the National Natural Science Foundation of China (No. 21405049)

Figures(9)

  • Cell alignment plays a crucial role in the repair and regeneration of tissues, which is caused by the "contact guidance" of micro/nano structures. In this paper, the nano-grooves with 200 nm in width, 400 nm in period and 75 nm in depth were fabricated on gold substrate with the technique of nanoimprint to simulate the extracellular matrix (ECM). Electric cell-substrate impedance sensing (ECIS) was employed firstly to real-time monitor cell alignment of human foreskin fibroblasts (HFF) and human immortal keratinocyte cells (HaCaT) on nano-grooves, which are two important functional cell types in skin wound-healing. The cell images displayed that the nano-grooves could induce the alignment of HFF cells, in which, the cell arrangement along the direction of nano-grooves occurred prior to the cell elongation. While the nano-grooves couldn't influence the morphology of HaCaT cells, and their adhesion and spread were delayed. In the ECIS monitoring, HFF and HaCaT cells both presented increased normalized impedance (NI) values at their respective characteristic frequencies of 977 and 1465 Hz on nano-grooves and flat electrodes with the prolongation of culture time during 24 h and the increasing trends of NI values were also similar:in the first 6 h, NI values increased faster, and then, the increasing rates declined obviously. HFF cells on nano-grooves generated more intense impedance signals with a larger distinction of increasing rate than those on flat electrodes, indicating that the nano-grooves could promote the adhesion and spread of HFF cells and the directional arrangement had a larger impact on the variation of NI values than cell elongation. While HFF cells adhered and spread in random directions, leading to the reduced difference in increasing rate of NI values. The NI values of HFF cells was further correlated with cell alignment, showing the enhanced impedance responses with the rising percentage of aligned cells. More importantly, there was a good linear correlation between NI values and the percentage of cells arranging along the direction of nano-grooves. In contrast, HaCaT cells had smaller NI values on the nano-grooves with the similar increasing rates, compared to the flat electrodes, revealing that the nano-grooves were less suitable for the adhesion and spread of HaCaT cells with almost no change of cell morphology, and the cell adhesion could cause more obvious variation of NI values than cell spread. Our research would provide a support for the development of complex cell sensors based on ECIS and its application in clinical research field.
  • 加载中
    1. [1]

      Goodman, S. L.; Sims, P. A.; Albrecht, R. M. Biomaterials 1996, 17, 2087.  doi: 10.1016/0142-9612(96)00016-6

    2. [2]

      Gerecht, S.; Bettinger, C. J.; Zhang, Z. T.; Borenstein, J. T.; Vunjak-Novakovic, G.; Langer, R. Biomaterials 2007, 28, 4068.  doi: 10.1016/j.biomaterials.2007.05.027

    3. [3]

      Patel, S.; Kurpinski, K.; Quigley, R.; Gao, H. F.; Hsiao, B. S.; Poo, M. M.; Li, S. Nano Lett. 2007, 7, 2122  doi: 10.1021/nl071182z

    4. [4]

      Flemming, R. G.; Murphy, C. J.; Abrams, G. A.; Goodman, S. L.; Nealey, P. F. Biomaterials 1999, 20, 573.  doi: 10.1016/S0142-9612(98)00209-9

    5. [5]

      Isenberg, B. C.; Tsuda, Y.; Williams, C.; Shimizu, T.; Yamato, M.; Okano, T.; Wong, J. Y. Biomaterials 2008, 29, 2565.  doi: 10.1016/j.biomaterials.2008.02.023

    6. [6]

      Kim, H. N.; Hong, Y.; Kim, M. S.; Kim, S. M.; Suh, K. Y. Bio-materials 2012, 33, 8782.

    7. [7]

      Zhou, F.; Yuan, L.; Huang, H.; Chen, H. Chin. Sci. Bull. 2009, 54, 3200.  doi: 10.1007/s11434-009-0366-1

    8. [8]

      Choi, C. H.; Hagvall, S. H.; Wu, B. M.; Dunn, J. C. Y.; Beygui, R. E.; Kim, C. J. Biomaterials 2007, 28, 1672.  doi: 10.1016/j.biomaterials.2006.11.031

    9. [9]

      Crouch, A. S.; Miller, D.; Luebke, K. J.; Hu, W. Biomaterials 2009, 30, 1560.  doi: 10.1016/j.biomaterials.2008.11.041

    10. [10]

      Lamers, E.; Walboomers, X. F.; Domanski, I. M.; Riet, J.; Delft, F. C. M. J. M.; Luttge, R.; Winnubst, L. A. J. A.; Gardeniers, H. J. G. E.; Jansen, J. A. Biomaterials 2010, 31, 3307.  doi: 10.1016/j.biomaterials.2010.01.034

    11. [11]

      Tsai, W. B.; Ting, Y. C.; Yang, J. Y.; Lai, J. Y.; Liu, H. L. J. Mater. Sci-Mater. Med. 2009, 20, 1367.  doi: 10.1007/s10856-008-3687-8

    12. [12]

      Viswanathan, P.; Ondeck, M. G.; Chirasatitsin, S.; Ngamkham, K. Reilly, G. C.; Engler, A. J.; Battaglia, G. Biomaterials 2015, 52, 140.  doi: 10.1016/j.biomaterials.2015.01.034

    13. [13]

      Liu, G. F.; Zhang, D.; Feng, C. L. Angew. Chem., Int. Ed. 2014, 53, 7789.  doi: 10.1002/anie.201403249

    14. [14]

      Liu, X. L.; Wang, S. T. Chem. Soc. Rev. 2014, 43, 2385.  doi: 10.1039/C3CS60419E

    15. [15]

      Zong, X. H.; Bien, H.; Chung, C. Y.; Yin, L. H.; Fang, D. F.; Hsiao, B. S.; Chu, B.; Entcheva, E. Biomaterials 2005, 26, 5330.  doi: 10.1016/j.biomaterials.2005.01.052

    16. [16]

      Zhu, B. S.; Zhang, Q. Q.; Lu, Q. H.; Xu, Y. H.; Yin, J.; Hu, J.; Wang, Z. G. Biomaterials 2003, 25, 4215.

    17. [17]

      Giaever, I.; Keese, C. R. Proc. Nat. Acad. Sci. U. S. A. 1984, 81, 3761.  doi: 10.1073/pnas.81.12.3761

    18. [18]

      Xiao, C.; Lachance, B.; Sunahara, G.; Luong, J. H. T. Anal. Chem. 2002, 74, 1333.  doi: 10.1021/ac011104a

    19. [19]

      Zhang, X.; Wang, W.; Li, F.; Voiculescu, I. Lab Chip 2017, 17, 2054.  doi: 10.1039/C7LC00375G

    20. [20]

      Abiri, H.; Abdolahad, M.; Gharooni, M.; Hosseini, S. A.; Janmaleki, M.; Azimi, S.; Hosseini, M.; Mohajerzadeh, S. Biosens. Bioelectron. 2015, 68, 577.  doi: 10.1016/j.bios.2015.01.057

    21. [21]

      Curtis, T. M.; Widder, M. W.; Brennan, L. M.; Schwager, S. J.; Schalie, W. H.; Fey, J.; Salazar, N. Lab Chip. 2009, 9, 2176.  doi: 10.1039/b901314h

    22. [22]

      Asphahani, F.; Zhang, M. G. Analyst 2007, 132, 835.  doi: 10.1039/b704513a

    23. [23]

      Xiao, C. D.; Lachance, B.; Sunahara, G.; Luong, J. H. T. Anal. Chem. 2002, 74, 5748.  doi: 10.1021/ac025848f

    24. [24]

      Xie, F. B.; Xu, Y. C.; Wang, L.; Mitchelson, K.; Xing, W. L.; Cheng, J. Analyst 2012, 137, 1343.  doi: 10.1039/c2an16141a

    25. [25]

      Kang, G.; Kim, Y. J.; Moon, H. S.; Lee, J. W.; Yoo, T. K.; Park, K.; Lee, J. H. Biomicrofluidics 2013, 7, 044126.  doi: 10.1063/1.4818838

    26. [26]

      Yang, L. J.; Arias, L. R.; Lane, T. S.; Yancey, M. D.; Mamouni, J. Anal. Bioanal. Chem. 2011, 399, 1823.  doi: 10.1007/s00216-010-4584-9

    27. [27]

      Yim, E. K. F.; Pang, S. W.; Leong, K. W. Exp. Cell Res. 2007, 313, 1820.  doi: 10.1016/j.yexcr.2007.02.031

    28. [28]

      Solly, K.; Wang, X. B.; Xu, X.; Strulovici, B.; Zheng, W. Assay Drug Dev. Techn. 2004, 2, 363.  doi: 10.1089/adt.2004.2.363

    29. [29]

      Cui, Y.; An, Y.; Jin, T. Y.; Zhang, F.; He, P. G. Sensor. Actuat. B-Chem. 2017, 250, 461.  doi: 10.1016/j.snb.2017.04.183

    30. [30]

      Hug, T. S. Assay Drug Dev. Techn. 2003, 1, 479.  doi: 10.1089/154065803322163795

    31. [31]

      Zhao, H. Ph.D. Dissertation, East China Normal University, Shanghai, 2012(in Chinese). 

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    14. [14]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Yumiao Gao Yixin Chen Jiaxin Wei Junjie Yu Yunxia Wang . Guarding the Kingdom: Skin Allies with Sunscreen for Mutual Protection. University Chemistry, 2024, 39(9): 74-80. doi: 10.12461/PKU.DXHX202404149

    17. [17]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(3)
  • Abstract views(2016)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return