Citation: Duo Huanhuan, Liu Yanling, Wang Yawen, Tang Yun, Huang Weihua. Photocatalytically Renewable Electrode for On-Line Regeneration under Visible Light Irradiation and Real-Time Monitoring of Living Cells[J]. Acta Chimica Sinica, ;2017, 75(11): 1091-1096. doi: 10.6023/A17070330 shu

Photocatalytically Renewable Electrode for On-Line Regeneration under Visible Light Irradiation and Real-Time Monitoring of Living Cells

  • Corresponding author: Huang Weihua, whhuang@whu.edu.cn
  • Received Date: 22 July 2017
    Available Online: 25 November 2017

    Fund Project: the National Natural Science Foundation of China 21675121the National Natural Science Foundation of China 21375099Project supported by the National Natural Science Foundation of China (Nos. 21375099, 21675121)

Figures(5)

  • Electrode fouling and passivation is an inevitable problem which seriously affects the electrode performance in cell culture and detection. Construction of photocatalytically renewable electrode by combination of nanophotocatalysts with electrochemical sensing materials could provide a promising approach for highly efficient renewal of electrode surface without damaging its micro-or nanostructures. However, the reactive oxygen species generated during photocatalysis always cause damages to cells being adhered or cultured on the electrode surface, which precludes on-line renewal of electrode during cell culture and detection. To address this issue, based on the visible light-induced renewable electrode (poly(3, 4-ethylenedioxythiophene) (PEDOT)-modified TiO2/CdS nanocomposites electrode we previously developed, a thin layer of gelatin hydrogel was spin-coated on the electrode in this work to realize efficient electrode renewal under visible light irradiation during the culture and detection of living cells. The optimized thickness (ca. 2 μm) of gelatin hydrogel was obtained by spin-coating under 3000 r/min. Benefitting from the network structure of gelatin hydrogel and the renewable performance of PEDOT@CdS/TiO2 nanocomposites, the gelatin coating efficiently blocked the diffusion of biomacromolecules from the bulk medium to the electrode surface and thus significantly diminished the fouling caused by these macromolecules, while the pollutants derived from small molecules could be efficiently degraded under visible light irradiation. Meanwhile, gelatin coating did not induce obviously decline in detection sensitivity, and a low detection limit of 4.2 nmol/L (S/N=3) could be obtained towards electrochemical detection of nitric oxide (NO). Most importantly, the gelatin layer efficiently blocked the ultrashort-lived but highly reactive oxygen species such as OH·(generated by photocatalytic process) diffusing from the electrode surface to the cells, and the damages to the cells caused by these highly reactive species could be therefore significantly decreased. The results from live/dead cell staining demonstrated that almost all the cells (>95%) cultured on gelatin-coated electrodes maintain their viability when the electrode was irradiated by visible light for 6 h, while a considerable part of cells (>40%) culture on the uncoated electrode lost their viability under the same conditions. These features allowed on-line renewal of the electrode during cell culture and detection as well as real-time monitoring of NO released from the human umbilical vein endothelial cells (HUVECs).
  • 加载中
    1. [1]

      Lin, M. H.; Song, P.; Zhou, G. B.; Zuo, X. L.; Aldalbahi, A.; Lou, X. D.; Shi, J.; Fan, C. Nat. Protoc. 2016, 11, 1244.  doi: 10.1038/nprot.2016.071

    2. [2]

      Yan, X. Y.; Gu, Y.; Li, C.; Liu, T.; Zheng, B.; Li, Y.; Zhang, Z. Q.; Yang, M. Biosens. Bioelectron. 2016, 77, 1032.  doi: 10.1016/j.bios.2015.10.085

    3. [3]

      Bai, R. G.; Muthoosamy, K.; Zhou, M. F.; Ashokkumar, M.; Huang, N. M.; Manickam, S. Biosens. Bioelectron. 2017, 87, 622.  doi: 10.1016/j.bios.2016.09.003

    4. [4]

      Tang, C. K.; Vaze, A.; Shen, M.; Rusling, J. F. ACS Sens. 2016, 1, 1036.  doi: 10.1021/acssensors.6b00256

    5. [5]

      Yang, Z. Y.; Ma, W.; Ying, Y. L.; Long, Y. T. Acta Chim. Sinica 2017, 75, 671(in Chinese).
       

    6. [6]

      Zhou, W. D.; Mahshid, S. S.; Wang, W. J.; Vallee-Belisle, A.; Zandstra, P. W.; Sargent, E. H.; Kelley, S. O. ACS Sens. 2017, 2, 495.  doi: 10.1021/acssensors.7b00136

    7. [7]

      Lin, X. Y.; Zhang, B. W.; Yang, Q.; Yan, F.; Hua, X.; Su, B. Anal. Chem. 2016, 88, 7821.  doi: 10.1021/acs.analchem.6b01866

    8. [8]

      Hui, N.; Sun, X. T.; Niu, S. Y.; Luo, X. L. ACS Appl. Mater. Interfaces 2017, 9, 2914.  doi: 10.1021/acsami.6b11682

    9. [9]

      Lee, J.; Arrigan, D. W. M.; Silvester, D. S. Anal. Chem. 2016, 88, 5104.  doi: 10.1021/acs.analchem.5b04782

    10. [10]

      Bhalla, V.; Carrara, S.; Stagni, C.; Samorì, B. Thin Solid Films 2010, 518, 3360.  doi: 10.1016/j.tsf.2009.10.022

    11. [11]

      Duan, W.; Ronen, A.; Walker, S.; Jassby, D. ACS Appl. Mater. Interfaces 2016, 8, 22574.  doi: 10.1021/acsami.6b07196

    12. [12]

      Hu, L. S.; Huo, K. F.; Chen, R. S.; Gao, B.; Fu, J. J.; Chu, P. K. Anal. Chem. 2011, 83, 8138.  doi: 10.1021/ac201639m

    13. [13]

      Guo, C. Y.; Huo, H. H.; Han, X.; Xu, C. L.; Li, H. L. Anal. Chem. 2014, 86, 876.  doi: 10.1021/ac4034467

    14. [14]

      Xu, J. Q.; Liu, Y. L.; Wang, Q.; Duo, H. H.; Zhang, X. W.; Li, Y. T.; Huan, W. H. Angew. Chem., Int. Ed. 2015, 54, 14402.  doi: 10.1002/anie.201507354

    15. [15]

      Duo, H. H.; Xu, J. Q.; Liu, Y. L.; Jin, Z. H.; Hu, X. B.; Huang, W. H. J. Electroanal. Chem. 2016, 781, 371.  doi: 10.1016/j.jelechem.2016.06.046

    16. [16]

      Xu, J. Q.; Duo, H. H.; Zhang, Y. G.; Zhang, X. W.; Fang, W.; Liu, Y. L.; Shen, A. G.; Hu, J. M.; Huang, W. H. Anal. Chem. 2016, 88, 3789.  doi: 10.1021/acs.analchem.5b04810

    17. [17]

      Atsumi, T.; Murata, J.; Kamiyanagi, I.; Fujisawa, S.; Ueha, T. Arch. Oral. Biol. 1998, 43, 73.  doi: 10.1016/S0003-9969(97)00073-3

    18. [18]

      Ferancová, A.; Rengaraj, S.; Kim, Y.; Labuda, J.; Sillanpää, M. Biosens. Bioelectron. 2010, 26, 314.  doi: 10.1016/j.bios.2010.08.026

    19. [19]

      Xu, F.; Zha, Y. P.; Wang, G. X.; Wang, Y.; Li, J. L. Acta Chim. Sinica 2009, 67, 957(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.09.012
       

    20. [20]

      Chen, A.; Zhou, M. Free Radical and Aging (Second Edition), People's Medical Publishing House, Beijing, 2011(in Chinese).

    21. [21]

      Zhu, A. W.; Liu, Y.; Rui, Q.; Tian, Y. Chem. Commun. 2011, 47, 4279.  doi: 10.1039/c0cc05821a

    22. [22]

      Zhuang, M.; Ding, C. Q.; Zhu, A. W.; Tian, Y. Anal. Chem. 2016, 86, 1829.

    23. [23]

      Li, L.; Zhu, A.; Tian, Y. Chem. Commun. 2013, 49, 1279.  doi: 10.1039/c2cc38339j

    24. [24]

      Liu, Y.; Chan-Park, M. B. Biomaterials 2010, 83, 1158.

    25. [25]

      Caliari, S. R.; Burdick, J. A. Nat. Methods 2016, 13, 405.  doi: 10.1038/nmeth.3839

    26. [26]

      Yu, P.; Zhou, H.; Cheng, H.; Qian, Q.; Mao, L. Q. Anal. Chem. 2011, 83, 5715.  doi: 10.1021/ac200942a

    27. [27]

      Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. Chem. Soc. Rev. 2010, 39, 1925.  doi: 10.1039/b701906h

    28. [28]

      Coneski, P. N.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3753.  doi: 10.1039/c2cs15271a

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(6)
  • Abstract views(2754)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return