Citation: Wang Yinhang, Li Wei, Luo Sha, Liu Shouxin, Ma Chunhui, Li Jian. Research Advances on the Applications of Immobilized Ionic Liquids Functional Materials[J]. Acta Chimica Sinica, ;2018, 76(2): 85-94. doi: 10.6023/A17070319 shu

Research Advances on the Applications of Immobilized Ionic Liquids Functional Materials

  • Corresponding author: Ma Chunhui, mchmchmchmch@163.com
  • Received Date: 14 July 2017
    Available Online: 23 February 2017

    Fund Project: the National Natural Science Foundation of China 31570567the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province in 2016 LBH-Q16001Project supported by the National Key R&D Program of China (No. 2017YFD0601006), the Central University Basic Research Expenses (Nos. 2572016BB01, 2572016BB02), the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province in 2016 (LBH-Q16001), the Research Start-up Funding of Introduce Talents in Northeast Forestry University (No. YQ2015-02), and the National Natural Science Foundation of China (Nos. 31500467, 31570567)the Central University Basic Research Expenses 2572016BB01the National Natural Science Foundation of China 31500467the Research Start-up Funding of Introduce Talents in Northeast Forestry University YQ2015-02the Central University Basic Research Expenses 2572016BB02the National Key R&D Program of China 2017YFD0601006

Figures(9)

  • As the biomass energy and green chemistry processes have gained more and more attention from researchers, ionic liquids as a novel green solvent were widely concerned by research teams since 1990s, because of many excellent properties of chemical stability, low viscosity, high conductivity and so on. The research on the preparation methods and application fields is getting better, especially in the fields of catalytic reaction, photoelectron chemistry, materials chemistry and biomass pretreatment. However, some disadvantages such as large consumption, high cost, hard to separate, and complexity in purification process were appeared. Thus, in recent years, many scholars tried to immobilize ILs on inorganic porous materials or organic polymer materials by physical adsorption or chemical grafting. In this way, the characteristics of ILs were transferred to the polyphase solid catalysts, and it can be applied to the continuous and closed fixed-bed reactions. In this review, the development of immobilized ionic liquid technology were summarized in detail, and the current applications of immobilized ionic liquid were illustrated with a multi-angle. The immobilized ionic liquid as catalysts were used in chemical catalytic field depending on the chemical structure of ionic liquid; While the immobilized ionic liquid as a functional materials were used in adsorption separation field depending on the surface characteristic of solid carrier.
  • 加载中
    1. [1]

      Zhao, S. H.; Wang, D.; Wang, M.; Kang, J.; Zhang, L. W. Chin. J. Org. Chem. 2015, 35, 865 (in Chinese).
       

    2. [2]

      Wang, Y. M.; Wang, X. C.; Li, S. J.; Huang, C. P.; Song, Y. L.; Chen, B. H. Chin. J. Org. Chem. 2015, 35, 404 (in Chinese).
       

    3. [3]

      Cui, W. H.; Zhang, Y. M.; Jia, R. Y.; Wang, Y.; Wei, T. B. Chin. J. Org. Chem. 2015, 35, 890 (in Chinese).
       

    4. [4]

      Xu, H. T.; Zhang, C. H.; Chen, G.; Shen, R. B.; Ying, A. G. Chin. J. Org. Chem. 2016, 36, 2353 (in Chinese).
       

    5. [5]

      He, X. X.; Liu, F. C.; Zeng, Q. S.; Liu, Z. Acta Chim. Sinica 2015, 73, 924 (in Chinese).
       

    6. [6]

      Zhang, S. G.; Zhang, J. H.; Zhang, Y.; Deng, Y. Q. Chem. Rev. 2017, 117, 6755.  doi: 10.1021/acs.chemrev.6b00509

    7. [7]

      Hurley, F. H.; Wier, T. P. Electrochem. Soc. 1951, 98, 203.  doi: 10.1149/1.2778132

    8. [8]

      Koch, V. R.; Miller, L. L.; Osteryoung, R. A. J. Am. Chem. Soc. 1976, 98, 5277.  doi: 10.1021/ja00433a037

    9. [9]

      Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 21, 1263.  doi: 10.1021/ic00133a078

    10. [10]

      Hussey, C. L. Pure & Appl. Chem. 1988, 60, 1763.
       

    11. [11]

      Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 13, 965.

    12. [12]

      Bonhote, P.; Dias, A. P. Inorg. Chem. 1996, 35, 1168.  doi: 10.1021/ic951325x

    13. [13]

      Mehnert, C. P. Chem. Eur. J. 2004, 11, 50.
       

    14. [14]

      Valkenberg, M. H.; Decastro, C.; Holderich, W. F. Green Chem. 2002, 4, 88.  doi: 10.1039/b107946h

    15. [15]

      Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Top. Catal. 2006, 40, 91.  doi: 10.1007/s11244-006-0111-9

    16. [16]

      Riisager, A.; Fehrmann, R.; Haumann, M.; Wasserscheid, P. Eur. J. Inorg. Chem. 2006, 4, 695.

    17. [17]

      Li, D. M.; Shi, F.; Guo, S.; Deng, Y. Q. Tetrahedron Lett. 2004, 45, 265.  doi: 10.1016/j.tetlet.2003.10.175

    18. [18]

      Zhang, S. J. Ionic Liquids and Green Chemistry, Science Press, Beijing, 2009, p. 569 (in Chinese).

    19. [19]

      Zhang, Z. M. M. S. Thesis, Zhejiang University, Hangzhou, 2008 (in Chinese).

    20. [20]

      Liang, L. Y. M. S. Thesis, Hebei University of Science & Technology, Shijiazhuang, 2013 (in Chinese).

    21. [21]

      Zhang, X. H.; Zhang, Y. X.; Yang, X. H.; Liu, H. M.; Xu, B. Chem. Ind. Times 2008, 22, 68 (in Chinese).
       

    22. [22]

      Tamboli, A. H.; Chaugule, A. A.; Sheikh, F. A.; Wook, J. C.; Kim, H. Chin. J. Mater. Res. 2015, 36, 1365.
       

    23. [23]

      Liu, M. M.; Pi, J. Y.; Wang, X. J.; Huang, R.; Du, Y. M.; Yu, X. Y.; Tan, W. F.; Liu, F.; Shea, K. J. Anal. Chim. Acta 2016, 932, 29.  doi: 10.1016/j.aca.2016.05.020

    24. [24]

      Cheng, W. G.; Chen, X.; Sun, J.; Wang, J. Q.; Zhang, S. J. Catal. Today 2013, 200, 117.  doi: 10.1016/j.cattod.2012.10.001

    25. [25]

      Wu, X. Y.; Liu, Y.; Huo, T.; Chen, Z. B.; Liu, Y. F.; Di, D. L.; Guo, M.; Zhao, L. Colloids Surf., A 2015, 487, 35.  doi: 10.1016/j.colsurfa.2015.09.063

    26. [26]

      Zhang, Y. P. Ph. D. Dissertation, Beijing Institute of Technology, Beijing, 2015 (in Chinese).

    27. [27]

      Wu, Z. W.; Chen, C.; Guo, Q. R.; Li, B. X.; Que, Y. G.; Wang, L.; Wan, H.; Guan, G. F. Fuel 2016, 184, 128.  doi: 10.1016/j.fuel.2016.07.004

    28. [28]

      Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962.  doi: 10.1021/ja026290w

    29. [29]

      Li, D. M.; Shi, F.; Peng, J. J.; Guo, S.; Deng, Y. Q. J. Org. Chem. 2004, 69, 3582.  doi: 10.1021/jo034859l

    30. [30]

      Arfan, A.; Bazureau, J. P. Org. Process Res. Dev. 2005, 9, 743.  doi: 10.1021/op058002x

    31. [31]

      Wang, J. X.; Wu, Q.; Li, H. S.; Zhen, B. Chem. Ind. Eng. Prog. 2008, 27, 1574 (in Chinese).  doi: 10.3321/j.issn:1000-6613.2008.10.016

    32. [32]

      Lai, G. Q.; Peng, J. J.; Li, J. Y. Tetrahedron Lett. 2006, 47, 6951.  doi: 10.1016/j.tetlet.2006.07.122

    33. [33]

      Li, D. M.; Shi, F.; Guo, S.; Deng, Y. Q. Tetrahedron Lett. 2004, 45, 265.  doi: 10.1016/j.tetlet.2003.10.175

    34. [34]

      Yue, C. B.; Wei, Y. Y.; Lv, M. J. Chin. J. Appl. Chem. 2006, 23, 1282 (in Chinese).  doi: 10.3969/j.issn.1000-0518.2006.11.021

    35. [35]

      Zhou, B. L. M. S. Thesis, Guangdong University of Technology, Guangzhou, 2005 (in Chinese).

    36. [36]

      Qiao, K.; Hagiwara, H.; Yokoyama, C. J. Mol. Catal. A: Chem. 2006, 246, 65.  doi: 10.1016/j.molcata.2005.07.031

    37. [37]

      Cai, Y.; Huang, D. Y.; Guan, G. F.; Wan, H. Fine Chem. 2007, 24, 1196 (in Chinese).  doi: 10.3321/j.issn:1003-5214.2007.12.012

    38. [38]

      Wei, Z. J.; Li, Y.; Li, F. J.; Chen, C. J.; Liu, Y. X.; Ren, Q. L. J. Chem. Ind. Eng. Soc. 2009, 6, 1452 (in Chinese).  doi: 10.3321/j.issn:0438-1157.2009.06.018

    39. [39]

      Zhang, J. S.; Wan, H.; Guan, G. F. Chemical Reaction Engineering and Technology 2008, 24, 503 (in Chinese).  doi: 10.3969/j.issn.1001-7631.2008.06.005

    40. [40]

      Zhang, Q. H.; Shi, F.; Deng, Y. Q. Chin. J. Catal. 2004, 25, 607 (in Chinese).  doi: 10.3321/j.issn:0253-9837.2004.08.004

    41. [41]

      Shi, F.; Deng, Y. Q.; Sima, T. L.; Peng, J. J.; Gu, Y. L.; Qiao, B. T. Angew. Chem., Int. Ed. 2003, 42, 3257.  doi: 10.1002/anie.200351098

    42. [42]

      Li, Y.; Zhen, B.; Li, H. S. Ind. Catal. 2011, 19, 27 (in Chinese).
       

    43. [43]

      Xu, H. M.; Zhao, H. H.; Song, H. L.; Miao, Z. C.; Yang, J.; Zhao, J.; Liang, N.; Chou, L. J. J. Mol. Catal. A: Chem. 2015, 410, 235.  doi: 10.1016/j.molcata.2015.09.020

    44. [44]

      Ochedzan-Siodlak, W.; Dziubek, K. Appl. Catal., A. 2014, 484, 134.  doi: 10.1016/j.apcata.2014.07.016

    45. [45]

      Cao, Y.; Zhou, H. B.; Li, J. Renew. Sust. Energ. Rev. 2016, 58, 871.  doi: 10.1016/j.rser.2015.12.237

    46. [46]

      Ananda, S. A.; Onome, S. O. Catal. Commun. 2010, 11, 1072.  doi: 10.1016/j.catcom.2010.05.012

    47. [47]

      Miao, J. M.; Wan, H.; Guan, G. F. Catal. Commun. 2011, 12, 353.  doi: 10.1016/j.catcom.2010.10.014

    48. [48]

      Tamboli, A. H.; Chaugule, A. A.; Sheikh, F. A.; Wook, J. C.; Kim, H. Chin. J. Mater. Res. 2015, 36, 1365.
       

    49. [49]

      Li, Y.; Liu, H.; Song, C. H.; Gu, X. M.; Li, H. M.; Zhu, W. S.; Yin, S.; Han, C. R. Bioresour. Technol. 2013, 133, 347.  doi: 10.1016/j.biortech.2013.01.038

    50. [50]

      Val, K.H.; Decastro, C.; Holderich, W. F. Green Chem. 2002, 4, 88.  doi: 10.1039/b107946h

    51. [51]

      Zhang, Q. H.; Shi, F.; Deng, Y. Q. Chin. J. Catal. 2004, 25, 607 (in Chinese).  doi: 10.3321/j.issn:0253-9837.2004.08.004

    52. [52]

      Xu, P. P. M. S. Thesis, Northeastern University, Shenyang, 2010 (in Chinese).

    53. [53]

      Jin, M. J.; Taher, A.; Kang, H. J.; Choi, M.; Ryoo, R. Green Chem. 2009, 11, 309.  doi: 10.1039/b817855k

    54. [54]

      Chen, W.; Zhang, Y. Y.; Zhu, L. B.; Lan, J. B.; Xie, R. G.; You, J. S. J. Am. Chem. Soc. 2007, 129, 13879.  doi: 10.1021/ja073633n

    55. [55]

      Burguete, M. I.; Erythropel, H.; Garcia-verdugo, E.; Santiago, V. L.; Sans, V. Green Chem. 2008, 10, 401.  doi: 10.1039/b714977h

    56. [56]

      Liu, Y.; Peng, J. J.; Zhai, S. R. Eur. J. Inorg. Chem. 2006, 15, 2947.
       

    57. [57]

      Gadenne, B.; Hesemann, P.; Polshettiwar, V.; Moreau, J. E. Eur. J. Inorg. Chem. 2006, 18, 3697.
       

    58. [58]

      Parvin, M. N.; Jin, H.; Ansari, M. B.; Oh, S. M.; Park, S. E. Appl. Catal. A 2012, 413, 205.
       

    59. [59]

      Zhao, H. H.; Yu, N. Y.; Wang, J. Q.; Zhuang, D. Y.; Ding, Y.; Tan, R.; Yin, D. H. Microporous Mesoporous Mater. 2009, 122, 240.  doi: 10.1016/j.micromeso.2009.03.006

    60. [60]

      Udayakumar, S.; Son, Y. S.; Lee, M. K.; Park, S. W.; Park, D. W. Appl. Catal. A 2008, 347, 192.  doi: 10.1016/j.apcata.2008.06.009

    61. [61]

      Wu, Y. T. M. S. Thesis, East China Normal University, Shanghai, 2013 (in Chinese).

    62. [62]

      Cui, L. D.; Ma, L. Zhejiang Chem. Ind. 2012, 43, 12 (in Chinese).
       

    63. [63]

      Tang, Y. M. Ph. D. Dissertation, Northwestern Polytechnical University, Xi'an, 2014 (in Chinese).

    64. [64]

      Zheng, X. X.; Luo, S. Z.; Zhang, L.; Cheng, J. P. Green Chem. 2009, 11, 455.  doi: 10.1039/b823123k

    65. [65]

      Zhang, Y.; Zhao, Y. W.; Xia, C. G. J. Mol. Catal. A: Chem. 2009, 306, 107.  doi: 10.1016/j.molcata.2009.02.032

    66. [66]

      Zhang, Y.; Xia, C. G. Appl. Catal. A 2009, 366, 141.  doi: 10.1016/j.apcata.2009.06.041

    67. [67]

      Abu, T.; Jin, B. K.; Ji, Y. J.; Wha, S. A.; Jin, M. Synlett 2009, 15, 2477.
       

    68. [68]

      Abureziq, R.; Wang, D. S.; Post, M.; Alper, H. Adv. Synth. Catal. 2007, 349, 2145.  doi: 10.1002/(ISSN)1615-4169

    69. [69]

      Jiang, Y. Y.; Guo, C.; Xia, H. S.; Mahmood, I.; Liu, C. Z.; Liu, H. Z. J. Mol. Catal. B-Enzym. 2009, 58, 103.  doi: 10.1016/j.molcatb.2008.12.001

    70. [70]

      Zhang, Y. P.; Jiao, Q. Z.; Wu, Q.; Li, H. S. J. Chem. Ind. Eng. 2014, 65, 4799 (in Chinese).
       

    71. [71]

      Wang, Z. B.; Wang, Y.; Meng, Q. J.; Lu, Q. M.; Tang, M. C. J. Instrumental Anal. 2013, 32, 1044 (in Chinese).  doi: 10.3969/j.issn.1004-4957.2013.09.003

    72. [72]

      Yang, J. M. S. Thesis, China University of Petroleum, Beijing, 2013 (in Chinese).

    73. [73]

      Sheikhian, L. Desin Water Treat. 2016, 57, 8447.  doi: 10.1080/19443994.2015.1022808

    74. [74]

      Hu, K.; Zhang, W. F.; Yang, H. X.; Cui, Y. X.; Zhang, J. Y.; Zhao, W. J.; Yu, A. J.; Zhang, S. S. Talanta 2016, 152, 392.  doi: 10.1016/j.talanta.2016.02.038

    75. [75]

      Qian, G. F.; Song, H.; Yao, S. J. Chromatogr. A 2016, 1429, 127.  doi: 10.1016/j.chroma.2015.11.083

    76. [76]

      Leila, S.; Sedigheh, B. S. J. Chromatogr. B 2016, 1009, 34.

    77. [77]

      Abdolmohammad, Z. H.; Galeh, A. M.; Shabkhizan, S.; Mousazadeh, H. King Saud Univ. Arabian J. Chem. 2011.
       

    78. [78]

      Nie, L. R.; Lu, J.; Zhang, W.; He, A.; Yao, S. Sep. Purif. Technol. 2015, 155, 2.  doi: 10.1016/j.seppur.2015.01.037

    79. [79]

      Tian, M.; Yan, H.; Row, K. H. J. Chromatogr. B 2009, 877, 738.  doi: 10.1016/j.jchromb.2009.02.012

    80. [80]

      Fang, G. Z.; Chen, J.; Wang, J. P.; He, J. X.; Wang, S. J. Chromatogr. A 2010, 1217, 1567.  doi: 10.1016/j.chroma.2010.01.010

    81. [81]

      Bi, W.; Tian, M.; Row, K. H. J. Chromatogr. B 2012, 880, 108.  doi: 10.1016/j.jchromb.2011.11.025

    82. [82]

      Tsyurupa, M. P.; Maslova, L. A.; Andreeva, A. I.; Mrachkovskaya, T. A.; Davankov, V. A. React. Funct. Polym. 1995, 25, 69.  doi: 10.1016/0923-1137(95)00021-A

    83. [83]

      Malik, D. J.; Warwick, G. L.; Venturi, M.; Streat, M.; Hellgardt, K.; Hoenich, N.; Dale, J. A. Biomaterials 2004, 25, 2933.  doi: 10.1016/j.biomaterials.2003.09.076

    84. [84]

      Lahari, C.; Jasti, L. S.; Fadnavis, N. W.; Ponrathnam, S. Langmuir 2010, 26, 1096.  doi: 10.1021/la904114u

    85. [85]

      Valderrama, C.; Gamisans, X.; Heras, X.; Farran, A.; Cortina, J. L. J. Hazard. Mater. 2008, 157, 386.  doi: 10.1016/j.jhazmat.2007.12.119

    86. [86]

      Du, X. L.; Yuan, Q. P.; Li, Y.; Zhou, H. H. Chem. Eng. Technol. 2008, 31, 87.  doi: 10.1002/(ISSN)1521-4125

    87. [87]

      Lu, C. X.; Luo, X. L.; Lu, L. L.; Li, H.; Chen, X.; Ji, Y. Sep. Purif. Technol. 2013, 36, 959.
       

    88. [88]

      Liu, Y. F.; Liu, J. X.; Chen, X. F.; Liu, Y. W.; Di, D. L. Food Chem. 2010, 123, 1027.  doi: 10.1016/j.foodchem.2010.05.055

    89. [89]

      Oberholzer, M. R.; Lenhoff, A. M. Langmuir 1999, 15, 3905.  doi: 10.1021/la981199k

    90. [90]

      Huang, J. H.; Huang, K. L.; Liu, S. Q.; Shi, S. J. Colloid Interface Sci. 2008, 317, 434.  doi: 10.1016/j.jcis.2007.09.077

    91. [91]

      Gao, W. H.; Butler, D.; Tomasko, D. L. Langmuir 2004, 20, 8083.  doi: 10.1021/la0355491

    92. [92]

      Li, A. M.; Zhang, Q. X.; Chen, J. L.; Fei, Z. H.; Long, C.; Li, W. X. React. Funct. Polym. 2001, 49, 225.  doi: 10.1016/S1381-5148(01)00080-3

    93. [93]

      Ye, H. L.; Di, D. L. J. Northwest Normal Univ. 2014, 50, 59 (in Chinese).
       

    94. [94]

      Wu, X. Y.; Liu, Y.; Liu, Y. F.; Di, D. L. Colloids Surf., A 2015, 469, 141.  doi: 10.1016/j.colsurfa.2015.01.001

    95. [95]

      Wu, X. Y.; Liu, Y.; Huo, T.; Chen, Z. B.; Liu, Y. F.; Di, D. L.; Guo, M.; Zhao, L. Colloids Surf., A 2015, 487, 35.  doi: 10.1016/j.colsurfa.2015.09.063

    96. [96]

      Fontanals, N.; Ronka, S.; Borrull, F.; Trochimczuk, A. W.; Marce, R, M. Talanta 2009, 80, 250.  doi: 10.1016/j.talanta.2009.06.068

    97. [97]

      Tian, M.; Yan, H. Row, K. H. Anal. Lett. 2009, 43, 110.  doi: 10.1080/00032710903276554

    98. [98]

      Bagheri, H.; Piri, M. H.; Naderi, M. Trends Anal. Chem. 2012, 34, 126.  doi: 10.1016/j.trac.2011.11.004

    99. [99]

      Rao, M.; Geng, X.; Liao, Y.; Hu, S. J.; Li, W. S. J. Membrane. Sci. 2012, 399, 37.
       

    100. [100]

      Han, D.; Tang, B.; Row, K. H. Anal. Lett. 2013, 46, 2359.  doi: 10.1080/00032719.2013.800533

    101. [101]

      Blasig, A.; Tang, J. B.; Hu, X. D.; Shen, Y. Q.; Radosz, M. Fluid Phase Equilib. 2007, 256, 75.  doi: 10.1016/j.fluid.2007.03.007

    102. [102]

      Arellano, I. H.; Madani, S. H.; Huang, J. H.; Pendleton, P. Chem. Eng. J. 2016, 283, 692.  doi: 10.1016/j.cej.2015.08.006

    103. [103]

      Zhu, L. L.; Zhang, C.; Liu, Y. H. J. Mater. Chem. 2010, 20, 1553.  doi: 10.1039/B912345H

    104. [104]

      Peng, C. H.; Cheng, X. S.; Cao, J. Y.; Chen, D. J. J. Central South Univ. (Nat. Sci. Ed.) 2010, 41, 416 (in Chinese).
       

    105. [105]

      Li, L. L. M. S. Thesis, University of Jinan, Jinan, 2015 (in Chinese).

    106. [106]

      Hou, L. W.; Ma, J. P.; Jiang, L. H. J. Instrumental Anal. 2015, 34, 715 (in Chinese).  doi: 10.3969/j.issn.1004-4957.2015.06.016

    107. [107]

      Dang, Y. F.; Ma, X. G.; Zou, J. P. J. Instrumental Anal. 2012, 31, 823 (in Chinese).  doi: 10.3969/j.issn.1004-4957.2012.07.011

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Xinyue Zhang Yifeng Ding Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093

Metrics
  • PDF Downloads(40)
  • Abstract views(3866)
  • HTML views(629)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return