Citation: Wang Yafeng, Yang Qian, Su Bin. Optical Sensors Based on Optical Interference of Nanoporous Film[J]. Acta Chimica Sinica, ;2017, 75(11): 1071-1081. doi: 10.6023/A17070300 shu

Optical Sensors Based on Optical Interference of Nanoporous Film

  • Corresponding author: Su Bin, subin@zju.edu.cn
  • Received Date: 4 July 2017
    Available Online: 26 November 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21335001 and 21575126) and the Zhejiang Provincial Natural Science Foundation (No. LR14B050001)the Zhejiang Provincial Natural Science Foundation LR14B050001the National Natural Science Foundation of China 21335001the National Natural Science Foundation of China 21575126

Figures(10)

  • Optical sensors are devices that transform the interaction between medium and analyte to optical signal. Optical interference is a technique that has been widely applied in optical sensors, which is label-free, fast and non-invasive. Light reflected from the top and bottom surfaces of single layer film, or each interfaces of multilayer film in optical sensors leads to constructive and destructive fringes of the optical interference pattern. Nanoporous films with large surface-to-volume ratio are beneficial to improve the sensitivity and lower the limit of detection of the sensors, which is typically used in the form of single layer, double layer or multilayer (usually served as photonic crystal). In this article, we introduce and review the applications of nanoporous films of silicon, anodic aluminum oxide, titanium dioxide and metal-organic framework in optical sensors based on the optical interference. A perspective of developments in this research field is also provided.
  • 加载中
    1. [1]

      Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Chem. Soc. Rev. 2013, 42, 8649.  doi: 10.1039/c3cs60179j

    2. [2]

      Jane, A.; Dronov, R.; Hodges, A.; Voelcker, N. H. Trends Biotechnol. 2009, 27, 230.  doi: 10.1016/j.tibtech.2008.12.004

    3. [3]

      Xu, R.; Wang, Y.; Duan, X.; Lu, K.; Micheroni, D.; Hu, A.; Lin, W. J. Am. Chem. Soc. 2016, 138, 2158.  doi: 10.1021/jacs.5b13458

    4. [4]

      Kang, D.; Sun, S.; Kurnik, M.; Morales, D. P.; Dahlquist, F. W.; Plaxco, K. W. J. Am. Chem. Soc. 2017, Ahead of Print.

    5. [5]

      Ding, S.-Y.; Dong, M.; Wang, Y.-W.; Chen, Y.-T.; Wang, H.-Z.; Su, C.-Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.  doi: 10.1021/jacs.5b10754

    6. [6]

      Li, Y. J.; Lu, Z. Q.; Liu, M.; Xing, G. W. Chin. J. Org. Chem. 2016, 36, 962.
       

    7. [7]

      Huang, Y. Z.; Lei, L. Q.; Zheng, C.; Wei, B.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 885.
       

    8. [8]

      Zhang, L.; Li, Y.; Li, D.-W.; Jing, C.; Chen, X.-Y.; Lv, M.; Huang, Q.; Long, Y.-T.; Willner, I. Angew. Chem., Int. Ed. 2011, 50, 6789.  doi: 10.1002/anie.201102151

    9. [9]

      Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem., Int. Ed. 2013, 52, 6011.  doi: 10.1002/anie.201301930

    10. [10]

      Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem., Int. Ed. 2011, 50, 11994.  doi: 10.1002/anie.v50.50

    11. [11]

      Erturk, G.; Ozen, H.; Tumer, M. A.; Mattiasson, B.; Denizli, A. Sens. Actuators B-Chem. 2016, 224, 823.  doi: 10.1016/j.snb.2015.10.093

    12. [12]

      Masson, J.-F. ACS Sens. 2017, 2, 16.  doi: 10.1021/acssensors.6b00763

    13. [13]

      Aube, A.; Charbonneau, D. M.; Pelletier, J. N.; Masson, J.-F. ACS Sens. 2016, 1, 1358.  doi: 10.1021/acssensors.6b00531

    14. [14]

      Xu, L.; Zhao, S.; Ma, W.; Wu, X.; Li, S.; Kuang, H.; Wang, L.; Xu, C. Adv. Funct. Mater. 2016, 26, 1602.  doi: 10.1002/adfm.v26.10

    15. [15]

      Qu, L.-L.; Liu, Y.-Y.; He, S.-H.; Chen, J.-Q.; Liang, Y.; Li, H.-T. Biosens. Bioelectron. 2016, 77, 292.  doi: 10.1016/j.bios.2015.09.039

    16. [16]

      Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Anal. Chem. 2013, 85, 2787.  doi: 10.1021/ac303282j

    17. [17]

      Tang, Y.; Li, Z.; Luo, Q.; Liu, J.; Wu, J. Biosens. Bioelectron. 2016, 79, 715.  doi: 10.1016/j.bios.2015.12.109

    18. [18]

      Mcdonagh, C.; Burke, C. S.; Maccraith, B. D. Chem. Rev. 2008, 108, 400.  doi: 10.1021/cr068102g

    19. [19]

      Gauglitz, G.; Brecht, A.; Kraus, G.; Mahm, W. Sens. Actuators B-Chem. 1993, 11, 21.  doi: 10.1016/0925-4005(93)85234-2

    20. [20]

      Lin, V. S. Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840.  doi: 10.1126/science.278.5339.840

    21. [21]

      Pan, S.; Rothberg, L. J. Nano Lett. 2003, 3, 811.  doi: 10.1021/nl034055l

    22. [22]

      Kim, D.-K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.; Kwon, Y.-S.; Tamiya, E. Anal. Chem. 2007, 79, 1855.  doi: 10.1021/ac061909o

    23. [23]

      Nemati, M.; Santos, A.; Kumeria, T.; Losic, D. Anal. Chem. 2015, 87, 9016.  doi: 10.1021/acs.analchem.5b02225

    24. [24]

      Orosco, M. M.; Pacholski, C.; Miskelly, G. M.; Sailor, M. J. Adv. Mater. 2006, 18, 1393.  doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Letant, S. E.; Sailor, M. J. Adv. Mater. 2000, 12, 355.  doi: 10.1002/(SICI)1521-4095(200003)12:5<355::AID-ADMA355>3.0.CO;2-H

    26. [26]

      Sailor, M. J.; Link, J. R. Chem. Commun. 2005, 1375.

    27. [27]

      Janshoff, A.; Dancil, K.-P. S.; Steinem, C.; Greiner, D. P.; Lin, V. S. Y.; Gurtner, C.; Motesharei, K.; Sailor, M. J.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 12108.  doi: 10.1021/ja9826237

    28. [28]

      Meade, S. O.; Yoon, M. S.; Ahn, K. H.; Sailor, M. J. Adv. Mater. 2004, 16, 1811.  doi: 10.1002/(ISSN)1521-4095

    29. [29]

      Berger, M. G.; Arens-Fischer, R.; Thönissen, M.; Krüger, M.; Billat, S.; Lüth, H.; Hilbrich, S.; Theiß, W.; Grosse, P. Thin Solid Films 1997, 297, 237.  doi: 10.1016/S0040-6090(96)09361-3

    30. [30]

      Sailor, M. J. ACS Nano 2007, 1, 248.  doi: 10.1021/nn700340u

    31. [31]

      Thompson, C. M.; Ruminski, A. M.; Garcia Sega, A.; Sailor, M. J.; Miskelly, G. M. Langmuir 2011, 27, 8967.  doi: 10.1021/la201272e

    32. [32]

      Allongue, P.; Costakieling, V.; Gerischer, H. J. Electrochem. Soc. 1993, 140, 1018.  doi: 10.1149/1.2056190

    33. [33]

      Dancil, K.-P. S.; Greiner, D. P.; Sailor, M. J. J. Am. Chem. Soc. 1999, 121, 7925.  doi: 10.1021/ja991421n

    34. [34]

      Gurtner, C.; Wun, A. W.; Sailor, M. J. Angew. Chem., Int. Ed. 1999, 38, 1966.  doi: 10.1002/(ISSN)1521-3773

    35. [35]

      Bateman, J. E.; Eagling, R. D.; Worrall, D. R.; Horrocks, B. R.; Houlton, A. Angew. Chem., Int. Ed. 1998, 37, 2683.  doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Robins, E. G.; Stewart, M. P.; Buriak, J. M. Chem. Commun. 1999, 2479.

    37. [37]

      Buriak, J. M. Chem. Rev. 2002, 102, 1271.  doi: 10.1021/cr000064s

    38. [38]

      Buriak, J. M.; Allen, M. J. J. Am. Chem. Soc. 1998, 120, 1339.  doi: 10.1021/ja9740125

    39. [39]

      Schwartz, M. P.; Cunin, F.; Cheung, R. W.; Sailor, M. J. Phys Status Solidi A 2005, 202, 1380.  doi: 10.1002/pssa.v202:8

    40. [40]

      Hemenway, B. R.; Solgaard, O.; Bloom, D. M. Appl. Phys. Lett. 1989, 55, 349.  doi: 10.1063/1.101905

    41. [41]

      Schechter, I.; Benchorin, M.; Kux, A. Anal. Chem. 1995, 67, 3727.  doi: 10.1021/ac00116a018

    42. [42]

      Stievenard, D.; Deresmes, D. Appl. Phys. Lett. 1995, 67, 1570.  doi: 10.1063/1.114942

    43. [43]

      Motohashi, A.; Ruike, M.; Kawakami, M.; Aoyagi, H.; Kinoshita, A.; Satou, A. Jpn. J. Appl. Phys. 1996, 35, 4253.  doi: 10.1143/JJAP.35.4253

    44. [44]

      Watanabe, K.; Okada, T.; Choe, I.; Sato, Y. Sens. Actuators B-Chem. 1996, 33, 194.  doi: 10.1016/0925-4005(96)80097-9

    45. [45]

      Pacholski, C.; Sartor, M.; Sailor, M. J.; Cunin, F.; Miskelly, G. M. J. Am. Chem. Soc. 2005, 127, 11636.  doi: 10.1021/ja0511671

    46. [46]

      Pacholski, C.; Yu, C.; Miskelly, G. M.; Godin, D.; Sailor, M. J. J. Am. Chem. Soc. 2006, 128, 4250.  doi: 10.1021/ja056702b

    47. [47]

      Pacholski, C.; Perelman, L. A.; Vannieuwenhze, M. S.; Sailor, M. J. Phys. Status Solidi A 2009, 206, 1318.  doi: 10.1002/pssa.v206:6

    48. [48]

      Kilian, K. A.; Boecking, T.; Gaus, K.; Gal, M.; Gooding, J. J. ACS Nano 2007, 1, 355.  doi: 10.1021/nn700141n

    49. [49]

      Orosco, M. M.; Pacholski, C.; Sailor, M. J. Nat. Nanotechnol. 2009, 4, 255.  doi: 10.1038/nnano.2009.11

    50. [50]

      Zhu, Y.; Soeriyadi, A. H.; Parker, S. G.; Reece, P. J.; Gooding, J. J. J. Mater. Chem. B 2014, 2, 3582.  doi: 10.1039/C4TB00281D

    51. [51]

      Kilian, K. A.; Lai, L. M. H.; Magenau, A.; Cartland, S.; Bocking, T.; Di, G. N.; Gal, M.; Gaus, K.; Gooding, J. J. Nano Lett. 2009, 9, 2021.  doi: 10.1021/nl900283j

    52. [52]

      Gupta, B.; Lowe, S. B.; Gooding, J. J.; Mai, K.; Wakefield, D.; Di, G. N.; Gaus, K.; Reece, P. J. Anal. Chem. 2015, 87, 9946.  doi: 10.1021/acs.analchem.5b02529

    53. [53]

      Kelly, T. L.; Gao, T.; Sailor, M. J. Adv. Mater. 2011, 23, 1776.  doi: 10.1002/adma.201004142

    54. [54]

      Tsang, C. K.; Kelly, T. L.; Sailor, M. J.; Li, Y. Y. ACS Nano 2012, 6, 10546.  doi: 10.1021/nn304131d

    55. [55]

      Li, J.; Sailor, M. J. Biosens. Bioelectron. 2014, 55, 372.  doi: 10.1016/j.bios.2013.12.016

    56. [56]

      Schwartz, M. P.; Yu, C.; Alvarez, S. D.; Migliori, B.; Godin, D.; Chao, L.; Sailor, M. J. Phys. Status Solidi A 2007, 204, 1444.  doi: 10.1002/pssa.v204:5

    57. [57]

      Schwartz, M. P.; Alvarez, S. D.; Sailor, M. J. Anal. Chem. 2007, 79, 327.  doi: 10.1021/ac061476p

    58. [58]

      Chen, M. Y.; Klunk, M. D.; Diep, V. M.; Sailor, M. J. Adv. Mater. 2011, 23, 4537.  doi: 10.1002/adma.201102090

    59. [59]

      Chen, M. Y.; Sailor, M. J. Anal. Chem. 2011, 83, 7186.  doi: 10.1021/ac201636n

    60. [60]

      Létant, S. E.; Sailor, M. J. Adv. Mater. 2001, 13, 335.  doi: 10.1002/(ISSN)1521-4095

    61. [61]

      Ruminski, A. M.; Moore, M. M.; Sailor, M. J. Adv. Funct. Mater. 2008, 18, 3418.  doi: 10.1002/adfm.v18:21

    62. [62]

      King, B. H.; Ruminski, A. M.; Synder, J. L.; Sailor, M. J. Adv. Mater. 2007, 19, 4530.  doi: 10.1002/(ISSN)1521-4095

    63. [63]

      Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Adv. Funct. Mater. 2010, 20, 2874.  doi: 10.1002/adfm.201000575

    64. [64]

      Ruminski, A. M.; Barillaro, G.; Chaffin, C.; Sailor, M. J. Adv. Funct. Mater. 2011, 21, 1511.  doi: 10.1002/adfm.v21.8

    65. [65]

      Lin, H.; Gao, T.; Fantini, J.; Sailor, M. J. Langmuir 2004, 20, 5104.  doi: 10.1021/la049741u

    66. [66]

      King, B. H.; Gramada, A.; Link, J. R.; Sailor, M. J. Adv. Mater. 2007, 19, 4044.  doi: 10.1002/(ISSN)1521-4095

    67. [67]

      Santos, A.; Kumeria, T.; Losic, D. Materials 2014, 7, 4297.  doi: 10.3390/ma7064297

    68. [68]

      Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.  doi: 10.1149/1.1837634

    69. [69]

      Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 677.  doi: 10.1021/nl025537k

    70. [70]

      Masuda, H.; Fukuda, K. Science 1995, 268, 1466.  doi: 10.1126/science.268.5216.1466

    71. [71]

      Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173.  doi: 10.1063/1.121004

    72. [72]

      Garcia-Vergara, S. J.; Habazaki, H.; Skeldon, P.; Thompson, G. E. Nanotechnology 2007, 18.

    73. [73]

      Law, C. S.; Sylvia, G. M.; Nemati, M.; Yu, J.; Losic, D.; Abell, A. D.; Santos, A. ACS Appl. Mater. Interfaces 2017, 9, 8929.  doi: 10.1021/acsami.7b01116

    74. [74]

      Kumeria, T.; Santos, A.; Losic, D. ACS Appl. Mater. Interfaces 2013, 5, 11783.  doi: 10.1021/am403465x

    75. [75]

      Kumeria, T.; Parkinson, L.; Losic, D. Nanoscale Res. Lett. 2011, 6, 634.  doi: 10.1186/1556-276X-6-634

    76. [76]

      Alvarez, S. D.; Li, C.-P.; Chiang, C. E.; Schuller, I. K.; Sailor, M. J. ACS Nano 2009, 3, 3301.  doi: 10.1021/nn900825q

    77. [77]

      Krismastuti, F. S. H.; Bayat, H.; Voelcker, N. H.; Schonherr, H. Anal. Chem. 2015, 87, 3856.  doi: 10.1021/ac504626m

    78. [78]

      Kumeria, T.; Kurkuri, M. D.; Diener, K. R.; Parkinson, L.; Losic, D. Biosens. Bioelectron. 2012, 35, 167.  doi: 10.1016/j.bios.2012.02.038

    79. [79]

      Macias, G.; Hernandez-Eguia, L. P.; Ferre-Borrull, J.; Pallares, J.; Marsal, L. F. ACS Appl. Mater. Interfaces 2013, 5, 8093.  doi: 10.1021/am4020814

    80. [80]

      Santos, A. J. Mater. Chem. C 2017, Ahead of Print.

    81. [81]

      Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. J. Mater. Chem. C 2013, 1, 5285.  doi: 10.1039/c3tc30782d

    82. [82]

      Shang, G.; Fei, G.; Li, Y.; Zhang, L. Nano Res. 2016, 9, 703.  doi: 10.1007/s12274-015-0949-x

    83. [83]

      Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. Anal. Chem. 2014, 86, 1837.  doi: 10.1021/ac500069f

    84. [84]

      Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Appl. Mater. Interfaces 2014, 6, 12971.  doi: 10.1021/am502882d

    85. [85]

      Kumeria, T.; Santos, A.; Rahman, M. M.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Photonics 2014, 1, 1298.  doi: 10.1021/ph500316u

    86. [86]

      Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Wang, C.; Li, J.; Losic, D. Nanoscale 2015, 7, 7770.  doi: 10.1039/C5NR00369E

    87. [87]

      Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Li, J.; Wang, C.; Losic, D. ACS Appl. Mater. Interfaces 2015, 7, 19816.  doi: 10.1021/acsami.5b05904

    88. [88]

      Santos, A.; Yoo, J. H.; Rohatgi, C. V.; Kumeria, T.; Wang, Y.; Losic, D. Nanoscale 2016, 8, 1360.  doi: 10.1039/C5NR05462A

    89. [89]

      Nemati, M.; Santos, A.; Law, C. S.; Losic, D. Anal. Chem. 2016, 88, 5971.  doi: 10.1021/acs.analchem.6b00993

    90. [90]

      Law, C. S.; Santos, A.; Nemati, M.; Losic, D. ACS Appl. Mater. Interfaces 2016, 8, 13542.  doi: 10.1021/acsami.6b03900

    91. [91]

      Mun, K.-S.; Alvarez, S. D.; Choi, W.-Y.; Sailor, M. J. ACS Nano 2010, 4, 2070.  doi: 10.1021/nn901312f

    92. [92]

      Gaya, U. I.; Abdullah, A. H. J. Photochem. Photobiol., C 2008, 9, 1.  doi: 10.1016/j.jphotochemrev.2007.12.003

    93. [93]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    94. [94]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    95. [95]

      Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.

    96. [96]

      Bai, J.; Zhou, B. Chem. Rev. 2014, 114, 10131.  doi: 10.1021/cr400625j

    97. [97]

      Song, Y.-Y.; Schmuki, P. Electrochem. Commun. 2010, 12, 579.  doi: 10.1016/j.elecom.2010.02.004

    98. [98]

      Liang, F.; Kelly, T. L.; Luo, L.-B.; Li, H.; Sailor, M. J.; Li, Y. Y. ACS Appl. Mater. Interfaces 2012, 4, 4177.  doi: 10.1021/am300896p

    99. [99]

      Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315.  doi: 10.1039/b802258p

    100. [100]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    101. [101]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    102. [102]

      Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.  doi: 10.1021/ja101415b

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(25)
  • Abstract views(5735)
  • HTML views(334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return