Citation: Wang Yafeng, Yang Qian, Su Bin. Optical Sensors Based on Optical Interference of Nanoporous Film[J]. Acta Chimica Sinica, ;2017, 75(11): 1071-1081. doi: 10.6023/A17070300 shu

Optical Sensors Based on Optical Interference of Nanoporous Film

  • Corresponding author: Su Bin, subin@zju.edu.cn
  • Received Date: 4 July 2017
    Available Online: 26 November 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21335001 and 21575126) and the Zhejiang Provincial Natural Science Foundation (No. LR14B050001)the Zhejiang Provincial Natural Science Foundation LR14B050001the National Natural Science Foundation of China 21335001the National Natural Science Foundation of China 21575126

Figures(10)

  • Optical sensors are devices that transform the interaction between medium and analyte to optical signal. Optical interference is a technique that has been widely applied in optical sensors, which is label-free, fast and non-invasive. Light reflected from the top and bottom surfaces of single layer film, or each interfaces of multilayer film in optical sensors leads to constructive and destructive fringes of the optical interference pattern. Nanoporous films with large surface-to-volume ratio are beneficial to improve the sensitivity and lower the limit of detection of the sensors, which is typically used in the form of single layer, double layer or multilayer (usually served as photonic crystal). In this article, we introduce and review the applications of nanoporous films of silicon, anodic aluminum oxide, titanium dioxide and metal-organic framework in optical sensors based on the optical interference. A perspective of developments in this research field is also provided.
  • 加载中
    1. [1]

      Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Chem. Soc. Rev. 2013, 42, 8649.  doi: 10.1039/c3cs60179j

    2. [2]

      Jane, A.; Dronov, R.; Hodges, A.; Voelcker, N. H. Trends Biotechnol. 2009, 27, 230.  doi: 10.1016/j.tibtech.2008.12.004

    3. [3]

      Xu, R.; Wang, Y.; Duan, X.; Lu, K.; Micheroni, D.; Hu, A.; Lin, W. J. Am. Chem. Soc. 2016, 138, 2158.  doi: 10.1021/jacs.5b13458

    4. [4]

      Kang, D.; Sun, S.; Kurnik, M.; Morales, D. P.; Dahlquist, F. W.; Plaxco, K. W. J. Am. Chem. Soc. 2017, Ahead of Print.

    5. [5]

      Ding, S.-Y.; Dong, M.; Wang, Y.-W.; Chen, Y.-T.; Wang, H.-Z.; Su, C.-Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.  doi: 10.1021/jacs.5b10754

    6. [6]

      Li, Y. J.; Lu, Z. Q.; Liu, M.; Xing, G. W. Chin. J. Org. Chem. 2016, 36, 962.
       

    7. [7]

      Huang, Y. Z.; Lei, L. Q.; Zheng, C.; Wei, B.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 885.
       

    8. [8]

      Zhang, L.; Li, Y.; Li, D.-W.; Jing, C.; Chen, X.-Y.; Lv, M.; Huang, Q.; Long, Y.-T.; Willner, I. Angew. Chem., Int. Ed. 2011, 50, 6789.  doi: 10.1002/anie.201102151

    9. [9]

      Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem., Int. Ed. 2013, 52, 6011.  doi: 10.1002/anie.201301930

    10. [10]

      Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem., Int. Ed. 2011, 50, 11994.  doi: 10.1002/anie.v50.50

    11. [11]

      Erturk, G.; Ozen, H.; Tumer, M. A.; Mattiasson, B.; Denizli, A. Sens. Actuators B-Chem. 2016, 224, 823.  doi: 10.1016/j.snb.2015.10.093

    12. [12]

      Masson, J.-F. ACS Sens. 2017, 2, 16.  doi: 10.1021/acssensors.6b00763

    13. [13]

      Aube, A.; Charbonneau, D. M.; Pelletier, J. N.; Masson, J.-F. ACS Sens. 2016, 1, 1358.  doi: 10.1021/acssensors.6b00531

    14. [14]

      Xu, L.; Zhao, S.; Ma, W.; Wu, X.; Li, S.; Kuang, H.; Wang, L.; Xu, C. Adv. Funct. Mater. 2016, 26, 1602.  doi: 10.1002/adfm.v26.10

    15. [15]

      Qu, L.-L.; Liu, Y.-Y.; He, S.-H.; Chen, J.-Q.; Liang, Y.; Li, H.-T. Biosens. Bioelectron. 2016, 77, 292.  doi: 10.1016/j.bios.2015.09.039

    16. [16]

      Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Anal. Chem. 2013, 85, 2787.  doi: 10.1021/ac303282j

    17. [17]

      Tang, Y.; Li, Z.; Luo, Q.; Liu, J.; Wu, J. Biosens. Bioelectron. 2016, 79, 715.  doi: 10.1016/j.bios.2015.12.109

    18. [18]

      Mcdonagh, C.; Burke, C. S.; Maccraith, B. D. Chem. Rev. 2008, 108, 400.  doi: 10.1021/cr068102g

    19. [19]

      Gauglitz, G.; Brecht, A.; Kraus, G.; Mahm, W. Sens. Actuators B-Chem. 1993, 11, 21.  doi: 10.1016/0925-4005(93)85234-2

    20. [20]

      Lin, V. S. Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840.  doi: 10.1126/science.278.5339.840

    21. [21]

      Pan, S.; Rothberg, L. J. Nano Lett. 2003, 3, 811.  doi: 10.1021/nl034055l

    22. [22]

      Kim, D.-K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.; Kwon, Y.-S.; Tamiya, E. Anal. Chem. 2007, 79, 1855.  doi: 10.1021/ac061909o

    23. [23]

      Nemati, M.; Santos, A.; Kumeria, T.; Losic, D. Anal. Chem. 2015, 87, 9016.  doi: 10.1021/acs.analchem.5b02225

    24. [24]

      Orosco, M. M.; Pacholski, C.; Miskelly, G. M.; Sailor, M. J. Adv. Mater. 2006, 18, 1393.  doi: 10.1002/(ISSN)1521-4095

    25. [25]

      Letant, S. E.; Sailor, M. J. Adv. Mater. 2000, 12, 355.  doi: 10.1002/(SICI)1521-4095(200003)12:5<355::AID-ADMA355>3.0.CO;2-H

    26. [26]

      Sailor, M. J.; Link, J. R. Chem. Commun. 2005, 1375.

    27. [27]

      Janshoff, A.; Dancil, K.-P. S.; Steinem, C.; Greiner, D. P.; Lin, V. S. Y.; Gurtner, C.; Motesharei, K.; Sailor, M. J.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 12108.  doi: 10.1021/ja9826237

    28. [28]

      Meade, S. O.; Yoon, M. S.; Ahn, K. H.; Sailor, M. J. Adv. Mater. 2004, 16, 1811.  doi: 10.1002/(ISSN)1521-4095

    29. [29]

      Berger, M. G.; Arens-Fischer, R.; Thönissen, M.; Krüger, M.; Billat, S.; Lüth, H.; Hilbrich, S.; Theiß, W.; Grosse, P. Thin Solid Films 1997, 297, 237.  doi: 10.1016/S0040-6090(96)09361-3

    30. [30]

      Sailor, M. J. ACS Nano 2007, 1, 248.  doi: 10.1021/nn700340u

    31. [31]

      Thompson, C. M.; Ruminski, A. M.; Garcia Sega, A.; Sailor, M. J.; Miskelly, G. M. Langmuir 2011, 27, 8967.  doi: 10.1021/la201272e

    32. [32]

      Allongue, P.; Costakieling, V.; Gerischer, H. J. Electrochem. Soc. 1993, 140, 1018.  doi: 10.1149/1.2056190

    33. [33]

      Dancil, K.-P. S.; Greiner, D. P.; Sailor, M. J. J. Am. Chem. Soc. 1999, 121, 7925.  doi: 10.1021/ja991421n

    34. [34]

      Gurtner, C.; Wun, A. W.; Sailor, M. J. Angew. Chem., Int. Ed. 1999, 38, 1966.  doi: 10.1002/(ISSN)1521-3773

    35. [35]

      Bateman, J. E.; Eagling, R. D.; Worrall, D. R.; Horrocks, B. R.; Houlton, A. Angew. Chem., Int. Ed. 1998, 37, 2683.  doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Robins, E. G.; Stewart, M. P.; Buriak, J. M. Chem. Commun. 1999, 2479.

    37. [37]

      Buriak, J. M. Chem. Rev. 2002, 102, 1271.  doi: 10.1021/cr000064s

    38. [38]

      Buriak, J. M.; Allen, M. J. J. Am. Chem. Soc. 1998, 120, 1339.  doi: 10.1021/ja9740125

    39. [39]

      Schwartz, M. P.; Cunin, F.; Cheung, R. W.; Sailor, M. J. Phys Status Solidi A 2005, 202, 1380.  doi: 10.1002/pssa.v202:8

    40. [40]

      Hemenway, B. R.; Solgaard, O.; Bloom, D. M. Appl. Phys. Lett. 1989, 55, 349.  doi: 10.1063/1.101905

    41. [41]

      Schechter, I.; Benchorin, M.; Kux, A. Anal. Chem. 1995, 67, 3727.  doi: 10.1021/ac00116a018

    42. [42]

      Stievenard, D.; Deresmes, D. Appl. Phys. Lett. 1995, 67, 1570.  doi: 10.1063/1.114942

    43. [43]

      Motohashi, A.; Ruike, M.; Kawakami, M.; Aoyagi, H.; Kinoshita, A.; Satou, A. Jpn. J. Appl. Phys. 1996, 35, 4253.  doi: 10.1143/JJAP.35.4253

    44. [44]

      Watanabe, K.; Okada, T.; Choe, I.; Sato, Y. Sens. Actuators B-Chem. 1996, 33, 194.  doi: 10.1016/0925-4005(96)80097-9

    45. [45]

      Pacholski, C.; Sartor, M.; Sailor, M. J.; Cunin, F.; Miskelly, G. M. J. Am. Chem. Soc. 2005, 127, 11636.  doi: 10.1021/ja0511671

    46. [46]

      Pacholski, C.; Yu, C.; Miskelly, G. M.; Godin, D.; Sailor, M. J. J. Am. Chem. Soc. 2006, 128, 4250.  doi: 10.1021/ja056702b

    47. [47]

      Pacholski, C.; Perelman, L. A.; Vannieuwenhze, M. S.; Sailor, M. J. Phys. Status Solidi A 2009, 206, 1318.  doi: 10.1002/pssa.v206:6

    48. [48]

      Kilian, K. A.; Boecking, T.; Gaus, K.; Gal, M.; Gooding, J. J. ACS Nano 2007, 1, 355.  doi: 10.1021/nn700141n

    49. [49]

      Orosco, M. M.; Pacholski, C.; Sailor, M. J. Nat. Nanotechnol. 2009, 4, 255.  doi: 10.1038/nnano.2009.11

    50. [50]

      Zhu, Y.; Soeriyadi, A. H.; Parker, S. G.; Reece, P. J.; Gooding, J. J. J. Mater. Chem. B 2014, 2, 3582.  doi: 10.1039/C4TB00281D

    51. [51]

      Kilian, K. A.; Lai, L. M. H.; Magenau, A.; Cartland, S.; Bocking, T.; Di, G. N.; Gal, M.; Gaus, K.; Gooding, J. J. Nano Lett. 2009, 9, 2021.  doi: 10.1021/nl900283j

    52. [52]

      Gupta, B.; Lowe, S. B.; Gooding, J. J.; Mai, K.; Wakefield, D.; Di, G. N.; Gaus, K.; Reece, P. J. Anal. Chem. 2015, 87, 9946.  doi: 10.1021/acs.analchem.5b02529

    53. [53]

      Kelly, T. L.; Gao, T.; Sailor, M. J. Adv. Mater. 2011, 23, 1776.  doi: 10.1002/adma.201004142

    54. [54]

      Tsang, C. K.; Kelly, T. L.; Sailor, M. J.; Li, Y. Y. ACS Nano 2012, 6, 10546.  doi: 10.1021/nn304131d

    55. [55]

      Li, J.; Sailor, M. J. Biosens. Bioelectron. 2014, 55, 372.  doi: 10.1016/j.bios.2013.12.016

    56. [56]

      Schwartz, M. P.; Yu, C.; Alvarez, S. D.; Migliori, B.; Godin, D.; Chao, L.; Sailor, M. J. Phys. Status Solidi A 2007, 204, 1444.  doi: 10.1002/pssa.v204:5

    57. [57]

      Schwartz, M. P.; Alvarez, S. D.; Sailor, M. J. Anal. Chem. 2007, 79, 327.  doi: 10.1021/ac061476p

    58. [58]

      Chen, M. Y.; Klunk, M. D.; Diep, V. M.; Sailor, M. J. Adv. Mater. 2011, 23, 4537.  doi: 10.1002/adma.201102090

    59. [59]

      Chen, M. Y.; Sailor, M. J. Anal. Chem. 2011, 83, 7186.  doi: 10.1021/ac201636n

    60. [60]

      Létant, S. E.; Sailor, M. J. Adv. Mater. 2001, 13, 335.  doi: 10.1002/(ISSN)1521-4095

    61. [61]

      Ruminski, A. M.; Moore, M. M.; Sailor, M. J. Adv. Funct. Mater. 2008, 18, 3418.  doi: 10.1002/adfm.v18:21

    62. [62]

      King, B. H.; Ruminski, A. M.; Synder, J. L.; Sailor, M. J. Adv. Mater. 2007, 19, 4530.  doi: 10.1002/(ISSN)1521-4095

    63. [63]

      Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Adv. Funct. Mater. 2010, 20, 2874.  doi: 10.1002/adfm.201000575

    64. [64]

      Ruminski, A. M.; Barillaro, G.; Chaffin, C.; Sailor, M. J. Adv. Funct. Mater. 2011, 21, 1511.  doi: 10.1002/adfm.v21.8

    65. [65]

      Lin, H.; Gao, T.; Fantini, J.; Sailor, M. J. Langmuir 2004, 20, 5104.  doi: 10.1021/la049741u

    66. [66]

      King, B. H.; Gramada, A.; Link, J. R.; Sailor, M. J. Adv. Mater. 2007, 19, 4044.  doi: 10.1002/(ISSN)1521-4095

    67. [67]

      Santos, A.; Kumeria, T.; Losic, D. Materials 2014, 7, 4297.  doi: 10.3390/ma7064297

    68. [68]

      Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.  doi: 10.1149/1.1837634

    69. [69]

      Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 677.  doi: 10.1021/nl025537k

    70. [70]

      Masuda, H.; Fukuda, K. Science 1995, 268, 1466.  doi: 10.1126/science.268.5216.1466

    71. [71]

      Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173.  doi: 10.1063/1.121004

    72. [72]

      Garcia-Vergara, S. J.; Habazaki, H.; Skeldon, P.; Thompson, G. E. Nanotechnology 2007, 18.

    73. [73]

      Law, C. S.; Sylvia, G. M.; Nemati, M.; Yu, J.; Losic, D.; Abell, A. D.; Santos, A. ACS Appl. Mater. Interfaces 2017, 9, 8929.  doi: 10.1021/acsami.7b01116

    74. [74]

      Kumeria, T.; Santos, A.; Losic, D. ACS Appl. Mater. Interfaces 2013, 5, 11783.  doi: 10.1021/am403465x

    75. [75]

      Kumeria, T.; Parkinson, L.; Losic, D. Nanoscale Res. Lett. 2011, 6, 634.  doi: 10.1186/1556-276X-6-634

    76. [76]

      Alvarez, S. D.; Li, C.-P.; Chiang, C. E.; Schuller, I. K.; Sailor, M. J. ACS Nano 2009, 3, 3301.  doi: 10.1021/nn900825q

    77. [77]

      Krismastuti, F. S. H.; Bayat, H.; Voelcker, N. H.; Schonherr, H. Anal. Chem. 2015, 87, 3856.  doi: 10.1021/ac504626m

    78. [78]

      Kumeria, T.; Kurkuri, M. D.; Diener, K. R.; Parkinson, L.; Losic, D. Biosens. Bioelectron. 2012, 35, 167.  doi: 10.1016/j.bios.2012.02.038

    79. [79]

      Macias, G.; Hernandez-Eguia, L. P.; Ferre-Borrull, J.; Pallares, J.; Marsal, L. F. ACS Appl. Mater. Interfaces 2013, 5, 8093.  doi: 10.1021/am4020814

    80. [80]

      Santos, A. J. Mater. Chem. C 2017, Ahead of Print.

    81. [81]

      Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. J. Mater. Chem. C 2013, 1, 5285.  doi: 10.1039/c3tc30782d

    82. [82]

      Shang, G.; Fei, G.; Li, Y.; Zhang, L. Nano Res. 2016, 9, 703.  doi: 10.1007/s12274-015-0949-x

    83. [83]

      Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. Anal. Chem. 2014, 86, 1837.  doi: 10.1021/ac500069f

    84. [84]

      Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Appl. Mater. Interfaces 2014, 6, 12971.  doi: 10.1021/am502882d

    85. [85]

      Kumeria, T.; Santos, A.; Rahman, M. M.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Photonics 2014, 1, 1298.  doi: 10.1021/ph500316u

    86. [86]

      Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Wang, C.; Li, J.; Losic, D. Nanoscale 2015, 7, 7770.  doi: 10.1039/C5NR00369E

    87. [87]

      Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Li, J.; Wang, C.; Losic, D. ACS Appl. Mater. Interfaces 2015, 7, 19816.  doi: 10.1021/acsami.5b05904

    88. [88]

      Santos, A.; Yoo, J. H.; Rohatgi, C. V.; Kumeria, T.; Wang, Y.; Losic, D. Nanoscale 2016, 8, 1360.  doi: 10.1039/C5NR05462A

    89. [89]

      Nemati, M.; Santos, A.; Law, C. S.; Losic, D. Anal. Chem. 2016, 88, 5971.  doi: 10.1021/acs.analchem.6b00993

    90. [90]

      Law, C. S.; Santos, A.; Nemati, M.; Losic, D. ACS Appl. Mater. Interfaces 2016, 8, 13542.  doi: 10.1021/acsami.6b03900

    91. [91]

      Mun, K.-S.; Alvarez, S. D.; Choi, W.-Y.; Sailor, M. J. ACS Nano 2010, 4, 2070.  doi: 10.1021/nn901312f

    92. [92]

      Gaya, U. I.; Abdullah, A. H. J. Photochem. Photobiol., C 2008, 9, 1.  doi: 10.1016/j.jphotochemrev.2007.12.003

    93. [93]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    94. [94]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    95. [95]

      Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.

    96. [96]

      Bai, J.; Zhou, B. Chem. Rev. 2014, 114, 10131.  doi: 10.1021/cr400625j

    97. [97]

      Song, Y.-Y.; Schmuki, P. Electrochem. Commun. 2010, 12, 579.  doi: 10.1016/j.elecom.2010.02.004

    98. [98]

      Liang, F.; Kelly, T. L.; Luo, L.-B.; Li, H.; Sailor, M. J.; Li, Y. Y. ACS Appl. Mater. Interfaces 2012, 4, 4177.  doi: 10.1021/am300896p

    99. [99]

      Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315.  doi: 10.1039/b802258p

    100. [100]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    101. [101]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    102. [102]

      Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.  doi: 10.1021/ja101415b

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    15. [15]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    20. [20]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

Metrics
  • PDF Downloads(28)
  • Abstract views(5960)
  • HTML views(421)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return