Citation: Song Congying, Sun Xun, Ye Ke, Zhu Kai, Cheng Kui, Yan Jun, Cao Dianxue, Wang Guiling. Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction[J]. Acta Chimica Sinica, ;2017, 75(10): 1003-1009. doi: 10.6023/A17070298 shu

Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction

  • Corresponding author: Wang Guiling, wangguiling@hrbeu.edu.cn
  • Received Date: 4 July 2017
    Available Online: 4 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51572052)the National Natural Science Foundation of China 51572052

Figures(9)

  • Fuel cells which use hydrogen peroxide as oxidant have been widely studied and presents good development foreground. As a liquid fuel, H2O2 possesses advantages of easily storage and transportation which make it can be widely used in underwater and space as a power source. At present, the most widely used catalysts for H2O2 electroreduction are noble metal catalysts. Compared with noble metals, transition metal oxides possess advantages of low cost and extensive sources. However, the catalytic activity of transition metal oxides is still much lower than noble metals. Therefore, many efforts should be made to improve the electrochemical performance of transition metal oxides. In this work, rGO is used as an additive to improve the electrochemcial performance of MnO2. An original electrode of MnO2 in-situ supported on reduced graphene oxide modified Ni foam (MnO2/rGO@Ni foam) is prepared through two-step hydrothermal methods. Primarily, the novel current collector of rGO@Ni foam is obtained with larger surface area which is beneficial to the next loading of MnO2. Secondly, MnO2 is grown on the rGO@Ni foam also by a hydrothermal treatment. Besides large surface area, the addition of rGO can provide more channels for electron transfer and then accelerate the reaction rate of H2O2 reduction. The morphology and phase composition of the as-prepared electrode are investigated by measurements of X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). It can be concluded from SEM and TEM images, both rGO and MnO2 exhibit sheet-like structure and there are many gaps existing between these sheets. Especially, the as-prepared MnO2 nanosheets builds a honeycomb structure which makes positive effects on the contact between H2O2 and catalyst. And XRD and HRTEM results show that MnO2 and rGO are successfully prepared on Ni foam. The electrochemical performance of the MnO2/rGO@Ni foam electrode toward H2O2 reduction is investigated by cyclic voltammetry and chronoamperometry in a three-electrode system in solutions of NaOH and H2O2. Results reveal that the reduction current density of H2O2 reduction on the MnO2/rGO@Ni foam electrode reaches 240 mA/cm2 in a solution of 1.0 mol/L H2O2 and 3 mol/L NaOH at -0.8 V which is much higher than that on MnO2 directly supported on Ni foam (MnO2@Ni foam). At the same time, a better stability is also achieved on the MnO2/rGO@Ni foam electrode. Generally speaking, the addition of rGO highly improves the electrocatalytic activity and stability of the as-prepared electrode indicating great application prospect in the future.
  • 加载中
    1. [1]

      Chen, X.; Yan, H.; Xia, D. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    2. [2]

      Li, J.; Zhang, X.; Pan, B. Chin. J. Chem. 2016, 34, 1021.  doi: 10.1002/cjoc.v34.10

    3. [3]

      Sun, L. M.; Cao, D. X.; Wang, G. L.; Lu, Y. Z.; Zhang, M. L. Acta Phys. Chim. Sin. 2008, 24, 323.
       

    4. [4]

      Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  doi: 10.1016/j.rser.2009.08.002

    5. [5]

      Tian, Y. M.; Lei, T.; Wang, G. L.; Cao, D. X. Chem. J. Chin. Univ. 2011, 32, 2382.
       

    6. [6]

      Cheng, K.; Yang, F.; Yan, P.; Cao, D. X.; Yin, J. L.; Wang, G. L. Chem. J. Chin. Univ. 2014, 35, 110.  doi: 10.7503/cjcu20130504

    7. [7]

      Li, Z. P.; Liu, B. H.; Arai, K.; Suda, S. J. Electrochem. Soc. 2003, 150, A868.  doi: 10.1149/1.1576767

    8. [8]

      Sun, L. M.; Cao, D. X.; Wang, G. L. J. Appl. Electrochem. 2008, 38, 1415.  doi: 10.1007/s10800-008-9581-8

    9. [9]

      Flätgen, G.; Wasle, S.; Lübke, M.; Eickes, C.; Radhakrishnan, G.; Doblhofer, K.; Ertl, G. Electrochim. Acta 1999, 44, 4499.  doi: 10.1016/S0013-4686(99)00184-X

    10. [10]

      Gerlache, M.; Senturk, Z.; Quarin, G.; Kauffmann, J. M. Electroanal. 1997, 9, 1088.  doi: 10.1002/(ISSN)1521-4109

    11. [11]

      Luo, Y. F.; Li, H. Z.; Chen, T. T.; Ge, C. W.; Tang, Y. W.; Chen, Y.; Lu, T. H. Electrochim. Acta 2013, 87, 839.  doi: 10.1016/j.electacta.2012.09.018

    12. [12]

      Yang, F.; Cheng, K.; Wu, T. H.; Zhang, Y.; Yin, J. L.; Wang, G. L.; Cao, D. X. RSC Adv. 2013, 3, 5483.  doi: 10.1039/c3ra23415k

    13. [13]

      Wang, G. L.; Hao, S. Y.; Lu, T. H.; Cao, D. X.; Yin, C. L. Chem. J. Chin. Univ. 2010, 31, 2264.
       

    14. [14]

      Wang, G. L.; Cao, D. X.; Yin, C. L.; Gao, Y. Y.; Yin, J. L.; Cheng, L. Chem. Mater. 2009, 21, 5112.  doi: 10.1021/cm901928b

    15. [15]

      Cheng, F.; Shen, J.; Ji, W.; Tao, Z.; Chen, J. ACS Appl. Mater. Inter. 2009, 1, 460.  doi: 10.1021/am800131v

    16. [16]

      Ma, Y.; Wang, R.; Wang, H.; Key, J.; Ji, S. J. Power Sources 2015, 280, 526.  doi: 10.1016/j.jpowsour.2015.01.139

    17. [17]

      Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. J. Phys. Chem. C 2007, 111, 1434.  doi: 10.1021/jp0647986

    18. [18]

      Yan, P.; Zhang, D. M.; Cheng, K.; Xu, Y.; Li, Y. Y.; Ye, K.; Cao, D. X.; Wang, G. L. Chem. J. Chin. Univ. 2015, 36, 1801.
       

    19. [19]

      Quan, Q.; Lin, X.; Zhang, N.; Xu, Y. J. Nanoscale 2017, 9, 2398.  doi: 10.1039/C6NR09439B

    20. [20]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351.  doi: 10.1016/j.nantod.2016.05.008

    21. [21]

      Yang, M. Q.; Zhang, N.; Wang, Y.; Xu, Y. J. J. Catal. 2017, 346, 21.  doi: 10.1016/j.jcat.2016.11.012

    22. [22]

      Hu, C.; Bai, Z.; Yang, L.; Lv, J.; Wang, K.; Guo, Y.; Cao, Y.; Zhou, J. Electrochim. Acta 2010, 55, 6036.  doi: 10.1016/j.electacta.2010.05.063

    23. [23]

      Cao, D.; Sun, L.; Wang, G.; Lv, Y.; Zhang, M. J. Electroanal. Chem. 2008, 621, 31.  doi: 10.1016/j.jelechem.2008.04.007

    24. [24]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806.  doi: 10.1021/nn1006368

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    9. [9]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    10. [10]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    11. [11]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    14. [14]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    15. [15]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(7)
  • Abstract views(1611)
  • HTML views(387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return