Citation: Su Yingying, Peng Tianhuan, Xing Feifei, Li Di, Fan Chunhai. Nanoplasmonic Biological Sensing and Imaging[J]. Acta Chimica Sinica, ;2017, 75(11): 1036-1046. doi: 10.6023/A17060289 shu

Nanoplasmonic Biological Sensing and Imaging

  • Corresponding author: Li Di, lidi@sinap.ac.cn Fan Chunhai, fchh@sinap.ac.cn
  • Received Date: 30 June 2017
    Available Online: 26 November 2017

    Fund Project: the National Basic Research Program of China 2013CB932803the National Basic Research Program of China 2013CB933800Project supported by the National Basic Research Program of China (Nos. 2013CB932803, 2013CB933800), the National Key R & D Program of China (Nos. 2016YFA0201200, 2016YFA0400900) and the National Natural Science Foundation of China (Nos. 21675166, 21227804)the National Key R & D Program of China 2016YFA0400900the National Natural Science Foundation of China 21227804the National Natural Science Foundation of China 21675166the National Key R & D Program of China 2016YFA0201200

Figures(22)

  • The localized surface plasmon resonance of metal nanoparticles is the collective oscillation of electrons on particle surface. The localized electromagnetic interaction brings a series of novel functions and applications. Plasmonic nanomaterials have been the significant part of nanophotonics, since its' localized surface plasmon resonance (LSPR) can focus incident phonons on the nanoscale surface. The unique plasmonic property is highly sensitive to their size, shape, coupling between particles as well as local dielectric environment. These properties can be utilized for the development of new biosensing and bioimaging applications. To date, many LSPR sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level, including LSPR-based sensing, surface-enhanced Raman scattering, metal-enhanced fluorescence, dark-field light-scattering, metal-mediated fluorescence resonance energy transfer. Moreover, the unique optical stability of plasmonic nanoparticles enables them as ideal probes in cellular imaging. Here, recent examples on application of plasmonic nanostructures in sensing and bioimaging are summarized, and perspectives are provided as well.
  • 加载中
    1. [1]

      Kawata, S.; Ohtsu, M.; Irie, M. Nano-Optics 2002, 84.

    2. [2]

      Gramotnev, D. K.; Bozhevolnyi, S. I. Nat. Photonics 2010, 4, 83.  doi: 10.1038/nphoton.2009.282

    3. [3]

      Quidant, R.; Kreuzer, M. Nat. Nanotechnol. 2010, 5, 762.  doi: 10.1038/nnano.2010.217

    4. [4]

      Ozbay, E. Science 2006, 311, 189.  doi: 10.1126/science.1114849

    5. [5]

      Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193.  doi: 10.1038/nmat2630

    6. [6]

      (a) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828; (b) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442; (c) Jung, L. S.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S.; Campbell, C. T. Langmuir 1998, 14, 5636; (d) Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Cheminform 2012, 43, doi:10.1002/chin.201218277; (e) Peng, H.; Tang, H.; Jiang, J. Sci. Chin. Chem. 2016, 59, 783; (f) Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C. Chem. Soc. Rev. 2014, 43, 2650.; (g) Lu, N, ; Gao, A.; Zhou, H.; Wang, Y.; Yang, X.; Wang, Y.; Li, T. Chin. J. Chem. 2016, 34, 308.

    7. [7]

      (a) G, M. Ann. Phys. Berlin 1908, 25, 377; (b) Bohren, C. F.; Huffman, D. R. Opt. Laser Technol. 1998, 31, 328.

    8. [8]

      Gans, R. Ann. Phys. Berlin 1912, 342, 881.  doi: 10.1002/(ISSN)1521-3889

    9. [9]

      Kelly, K. L.; Coronado, E.; Lin, L. Z.; Schatz, G. C. Cheminform 2003, 34, 668.

    10. [10]

      Choi, Y.; Park, Y.; Kang, T.; Lee, L. P. Nat. Nanotechnol. 2009, 4, 742.  doi: 10.1038/nnano.2009.258

    11. [11]

      Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nat. Mater. 2011, 10, 631.  doi: 10.1038/nmat3029

    12. [12]

      Xu, Y.; Li, K.; Qin, W.; Zhu, B.; Zhou, Z.; Shi, J.; Wang, K.; Hu, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 1968.  doi: 10.1021/ac5043895

    13. [13]

      Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoscale 2015, 7, 15070.  doi: 10.1039/C5NR04433B

    14. [14]

      Li, K.; Qin, W.; Li, F.; Zhao, X.; Jiang, B.; Wang, K.; Deng, S.; Fan, C.; Li, D. Angew. Chem., Int. Ed. 2013, 52, 11542.  doi: 10.1002/anie.201305980

    15. [15]

      Peng, T.; Qin, W.; Wang, K.; Shi, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 9403.  doi: 10.1021/acs.analchem.5b02248

    16. [16]

      Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080.  doi: 10.1021/nl071008a

    17. [17]

      Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419.  doi: 10.1126/science.1089171

    18. [18]

      Lee, S. E.; Alivisatos, P.; Bissell, M. J.; Chen, Q.; Bhat, R.; Petkiewicz, S.; Smith, J.; Correia, A.; Ferry, V. Nano Lett. 2015, 15.

    19. [19]

      Jun, Y. W.; Sheikholeslami, S.; Hostetter, D. R.; Tajon, C.; Craik, C. S.; Alivisatos, A. P. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17735.  doi: 10.1073/pnas.0907367106

    20. [20]

      Kim, S.; Park, J. E.; Hwang, W.; Seo, J.; Lee, Y.; Hwang, J.; Nam, J. J. Am. Chem. Soc. 2017, 139, 3558.  doi: 10.1021/jacs.7b01311

    21. [21]

      (a) Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. Anal. Chem. 2012, 84, 4185; (b) Chen, G.; Chen, W.; Yen, Y.; Wang, C.; Chang, H.; Chen, C. Anal. Chem. 2014, 86, 6843; (c) Sener, G.; Uzun, L.; Denizli, A. Anal. Chem. 2014, 86, 514; (d) Soh, J. H.; Lin, Y.; Rana, S.; Ying, J. Y.; Stevens, M. M. Anal. Chem. 2015, 87, 7644.

    22. [22]

      Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238.  doi: 10.1021/jp057170o

    23. [23]

      de la Rica R.; Stevens, M. M. Nat. Nanotechnol. 2012, 7, 821.  doi: 10.1038/nnano.2012.186

    24. [24]

      Novo, C.; Funston, A. M.; Mulvaney, P. Nat. Nanotechnol. 2008, 3, 598.  doi: 10.1038/nnano.2008.246

    25. [25]

      Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292.  doi: 10.1021/jacs.5b00324

    26. [26]

      Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. Chem. Soc. Rev. 2008, 37, 1001.  doi: 10.1039/b708461g

    27. [27]

    28. [28]

      Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. Nat. Commun. 2014, 5, 3448.

    29. [29]

      Su, J.; Wang, D.; Nörbel, L.; Shen, J.; Zhao, Z.; Dou, Y.; Peng, T.; Shi, J.; Mathur, S.; Fan, C.; Song, S. Anal. Chem. 2017, 89, 2531.  doi: 10.1021/acs.analchem.6b04729

    30. [30]

      (a) Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Nat. Photonics 2009, 3, 654; (b) Wang, Y; Zu, X.; Yi, G.; Luo, H.; Wang, H.; Song, X. Chin. J. Chem. 2016, 34, 1321.

    31. [31]

      Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Science 2012, 338, 506.  doi: 10.1126/science.1228638

    32. [32]

      Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem., Int. Ed. 2017, 56.

    33. [33]

      Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; Shi, J.; Wang, L.; Lal, R.; Fan, C. Nat. Commun. 2017, 8, 15646.  doi: 10.1038/ncomms15646

    34. [34]

      Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517.  doi: 10.1021/ja9102698

    35. [35]

      Qian, W.; Huang, X.; Kang, B.; El-Sayed, M. A. J. Biomed. Opt. 2010, 15, 046025.  doi: 10.1117/1.3477179

    36. [36]

      Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. J. Phys. Chem. C 2009, 113, 2676.

    37. [37]

      (a) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Nano Lett. 2005, 5, 829; (b) Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517; (c) Yu, C.; Nakshatri, H.; Irudayaraj, J. Nano Lett. 2007, 7, 2300; (d) Yu, C.; Irudayaraj, J. Anal. Chem. 2007, 79, 572.

    38. [38]

      Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.  doi: 10.1038/ncomms2722

    39. [39]

      Lee, K.; Cui, Y.; Lee, L. P.; Irudayaraj, J. Nat. Nanotechnol. 2014, 9, 474.  doi: 10.1038/nnano.2014.73

    40. [40]

      Isojima, H.; Iino, R.; Niitani, Y.; Noji, H.; Tomishige, M. Nat. Chem. Biol. 2016, 12, 290.  doi: 10.1038/nchembio.2028

    41. [41]

      (a) Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Dong, M. S.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. Nat. Biotechnol. 2008, 26, 83; (b) Wang, X.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. J. Am. Chem. Soc. 2012, 134, 7414; (c) Ando, J.; Fujita, K.; Smith, N. I.; Kawata, S. Nano Lett. 2011, 11, 5344; (d) Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. J. Phys. Chem. C2010, 114, 7421; (e) Wang, Z.; Zong, S.; Yang, J.; Li, J.; Cui, Y. Biosens. Bioelectron. 2011, 26, 2883.

    42. [42]

      Lin, L.; Tian, X.; Hong, S.; Dai, P.; You, Q.; Wang, R.; Feng, L.; Xie, C.; Tian, Z.; Chen, X. Angew. Chem, Int. Ed. 2013, 52, 7266.  doi: 10.1002/anie.201301387

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(85)
  • Abstract views(6802)
  • HTML views(2080)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return