Citation: Zhu Chan, Hai Yang, Zhao Zhigang, Yang Yaoyue. Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media[J]. Acta Chimica Sinica, ;2018, 76(1): 30-34. doi: 10.6023/A17060279 shu

Preliminary Study of Ni and P Low-doped Pd-based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media

  • Corresponding author: Yang Yaoyue, yaoyueyoung@swun.edu.cn
  • Received Date: 26 June 2017
    Available Online: 10 January 2017

    Fund Project: the Fundamental Research Funds for the Central Universities 2017NGJPY05the National Natural Science Foundation of China 21603177the Innovation Funds for SMU students 201610656050the Natural Science Foundation of Sichuan Province 2016JY0212Project supported by the National Natural Science Foundation of China (No. 21603177), the Natural Science Foundation of Sichuan Province (No. 2016JY0212), the Fundamental Research Funds for the Central Universities (No. 2017NGJPY05) and the Innovation Funds for SMU students (No. 201610656050)

Figures(5)

  • Among currently reported anodic nano-alloy electrocatlysts for direct alkaline ethanol fuel cells (DAEFCs), the mass fraction (w) of co-catalysts is generally larger than 20%. This could increase the thickness of the catalyst layer in Membrane Electrode Assembly (MEA), which not only decreases the discharge voltage of fuel cells, also reduces the utilization of the noble metals such as Pt and Pd. To solve this problem, here we synthesized a series of Pd-Ni-P alloy electrocatalysts with ultra-low doping amount of Ni and P, using ca. 1.5 mg NaH2PO2 as reducing agent. To obtain different doping amount of Ni and P, the pH value of the synthetic solution was adjusted from 8 to 12 by 0.1 mol/L NaOH. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) results showed that the mass fraction of Ni and P were low to 0.2% and 0.05%, respectively, when the pH value of the synthetic solution is 10. Transmission Electron Microscopy (TEM) images showed that nanoparticles were distributed evenly on the carbon base, and their mean particle sizes increased from ca. 3.78 nm to ca. 5.4 nm with alkalinity of synthetic solutions increasing. Cyclic Voltammograms in 0.5 mol/L CH3CH2OH+1 mol/L NaOH solution revealed that the catalyst obtained under the pH 10 synthetic solution (hereafter denoted as Pd-Ni-P/C-pH10) gave a highest apparent current density of ca. 2466 mA•mg-1 Pd, nearly 2.7 times in respect of that of the commercial Pd/C catalyst (JM). Meanwhile, the durability of Pd-Ni-P/C-pH10 for ethanol oxidation was improved by ca. 2.8 times compared to commercial catalyst. Relative to pure Pd, the binding energy of Pd 3d5/2 of as-prepared catalysts all positively shifted, suggesting an obvious electronic interaction between Pd, Ni and P component in as-prepared catalysts. This interaction could led to a shift of the d-band center of Pd component, which may play a pivotal and dominated role in improving the catalytic performance for the ethanol electrooxidation in alkaline media.
  • 加载中
    1. [1]

      Antolini, E.; Gonzalez, E. J. Power Sources 2010, 195, 3431.  doi: 10.1016/j.jpowsour.2009.11.145

    2. [2]

      Rabis, A.; Rodriguez, P.; Schmidt, T. J. ACS Catalysis 2012, 2, 864.  doi: 10.1021/cs3000864

    3. [3]

      Xie, S.-W.; Chen, S.; Liu, Z.-Q.; Xu, C.-W. Int. J. Electrochem. Sci 2011, 6, 882.
       

    4. [4]

      Wang, Y.; Zou, S.; Cai, W.-B. Catalysis 2015, 5, 1507.
       

    5. [5]

      Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183.  doi: 10.1021/cr9000995

    6. [6]

      Antolini, E. J. Power Sources 2007, 170, 1.  doi: 10.1016/j.jpowsour.2007.04.009

    7. [7]

      Demirci, U. B. J. Power Sources 2007, 173, 11.  doi: 10.1016/j.jpowsour.2007.04.069

    8. [8]

      Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. Phys. Rev. Lett. 2004, 93, 156801.  doi: 10.1103/PhysRevLett.93.156801

    9. [9]

      Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.  doi: 10.1039/b103525h

    10. [10]

      Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E.; Lamy, C. J. Electroanal. Chem. 2004, 563, 81.  doi: 10.1016/j.jelechem.2003.08.019

    11. [11]

      Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654.  doi: 10.1021/jp037215q

    12. [12]

      Wang, Y.; Shi, F.-F.; Yang, Y.-Y.; Cai, W.-B. J. Power Sources 2013, 243, 369.  doi: 10.1016/j.jpowsour.2013.06.021

    13. [13]

      Jiang, R.; Tran, D. T.; McClure, J. P.; Chu, D. ACS Catal. 2014, 4, 2577.  doi: 10.1021/cs500462z

    14. [14]

      Chen, L.; Lu, L.; Zhu, H.; Chen, Y.; Huang, Y.; Li, Y.; Wang, L. Nat. Commun. 2017, 8, 14136.  doi: 10.1038/ncomms14136

    15. [15]

      Qi, Z.; Geng, H.; Wang, X.; Zhao, C.; Ji, H.; Zhang, C.; Xu, J.; Zhang, Z. J. Power Sources 2011, 196, 5823.  doi: 10.1016/j.jpowsour.2011.02.083

    16. [16]

      Ahmed, M. S.; Jeon, S. ACS Catal. 2014, 4, 1830.  doi: 10.1021/cs500103a

    17. [17]

      Ma, L.; He, H.; Hsu, A.; Chen, R. J. Power Sources 2013, 241, 696.  doi: 10.1016/j.jpowsour.2013.04.051

    18. [18]

      Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. ACS Catal. 2012, 2, 287.  doi: 10.1021/cs2005955

    19. [19]

      Mao, H.; Wang, L.; Zhu, P.; Xu, Q.; Li, Q. Int. J. Hydrogen Energy 2014, 39, 17583.  doi: 10.1016/j.ijhydene.2014.08.079

    20. [20]

      Huang, M.-H.; Jin, B.-Y.; Zhao, L.-H.; Sun, S.-G. Acta Phys.-Chim. Sin. 2017, 33, 563(in Chinese).  doi: 10.3866/PKU.WHXB201612072

    21. [21]

      Tao, X.; Li, L.; Qi, X.; Wei, Z. Acta Chim. Sinica 2016, 75, 237(in Chinese).
       

    22. [22]

      Lai, Q.-Z.; Yin, G.-P.; Wang, Z.-B. J. Chem. Eng. Chin. Univ. 2009, 23, 756(in Chinese).  doi: 10.3321/j.issn:1003-9015.2009.05.005

    23. [23]

      Wang, N.; Zhang, W.; Wang, Y.-X. Chem. Ind. Eng. 2017, 34, 80(in Chinese).
       

    24. [24]

      Wang, J.-Y.; Kang, Y.-Y.; Yang, H.; Cai, W.-B. J. Phys. Chem. C 2009, 113, 8366.
       

    25. [25]

      Yang, G.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, T. Electrochem. Commun. 2010, 12, 492.  doi: 10.1016/j.elecom.2010.01.029

    26. [26]

      Mao, X. Y.; Liang, X. P.; Liu, J.; Liu, L.; Liu, K. Key Eng. Mater. 2014, 633, 330.  doi: 10.4028/www.scientific.net/KEM.633

    27. [27]

      Dutta, A.; Datta, J. J. Phys. Chem. C 2012, 116, 25677.  doi: 10.1021/jp305323s

    28. [28]

      Yin, J.; Shan, S.; Ng, M. S.; Yang, L.; Mott, D.; Fang, W.; Kang, N.; Luo, J.; Zhong, C. J. Langmuir 2013, 29, 9249.  doi: 10.1021/la401839m

    29. [29]

      Mao, H.; Huang, T.; Yu, A. S. J. Mater. Chem. A 2014, 2, 16378.  doi: 10.1039/C4TA03911D

    30. [30]

      Li, L.; Chen, M.; Huang, G.; Yang, N.; Zhang, L.; Wang, H.; Liu, Y.; Wang, W.; Gao, J. J. Power Sources 2014, 263, 13.  doi: 10.1016/j.jpowsour.2014.04.021

    31. [31]

      Huang, Z.; Zhou, H.; Li, C.; Zeng, F.; Fu, C.; Kuang, Y. J. Mater. Chem. 2012, 22, 1781.  doi: 10.1039/C1JM13024B

    32. [32]

      Shen, S.; Zhao, T.; Xu, J.; Li, Y. J. Power Sources 2010, 195, 1001.  doi: 10.1016/j.jpowsour.2009.08.079

    33. [33]

      Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.  doi: 10.1021/jp0653510

    34. [34]

      Wang, J.-Y.; Zhang, H.-X.; Jiang, K.; Cai, W.-B. J. Am. Chem. Soc. 2011, 133, 14876.  doi: 10.1021/ja205747j

    35. [35]

      Rodriguez, P.; Kwon, Y.; Koper, M. T. Nat. Chem. 2012, 4, 177.  doi: 10.1038/nchem.1221

    36. [36]

      Yang, Y.-Y.; Ren, J.; Li, Q.-X.; Zhou, Z.-Y.; Sun, S.-G.; Cai, W.-B. ACS Catal. 2014, 4, 798.  doi: 10.1021/cs401198t

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(4)
  • Abstract views(1477)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return