Citation: Shi Minglin, Zhan Gu, Du Wei, Chen Yingchun. Direct Asymmetric Aza-Vinylogous Mannich Reaction of Nitrones from Isatins and Ketimines[J]. Acta Chimica Sinica, ;2017, 75(10): 998-1002. doi: 10.6023/A17060277 shu

Direct Asymmetric Aza-Vinylogous Mannich Reaction of Nitrones from Isatins and Ketimines

  • Corresponding author: Du Wei, duweiyb@scu.edu.cn Chen Yingchun, ycchen@scu.edu.cn
  • Received Date: 26 June 2017
    Available Online: 31 October 2017

    Fund Project: the National Natural Science Foundation of China 21602143Project supported by the National Natural Science Foundation of China (No. 21602143)

Figures(2)

  • Direct asymmetric vinylogous Mannich reaction is an efficient and powerful method for the synthesis of δ-amino-α, β-unsaturated carbonyl compounds; however, the nucleophiles are generally limited to γ-butenolides and α, α-dicyanoolefins. Therefore, it is highly desirable to design new vinylogous nucleophiles and develop the related asymmetric reactions. Recently, we disclosed a new type of nitrones derived from isatins and N-benzyl hydroxylamines, which could easily generate nitrone ylide species in the presence of a tertiary amine, and undergo asymmetric formal[3+2] cycloadditions with α, β-unsaturated aldehydes via iminium ion catalysis of a chiral secondary amine. Subsequently, we found that such nitrone ylides could isomerize to more interesting aza-dienolate-type intermediates, and engage in direct stereoselective aza-vinylogous Michael reactions with nitroalkenes under the catalysis of a bifunctional thiourea-tertiary amine, delivering chiral nitrone derivatives with extended carbon skeletons without subsequent cyclization. In this case, the same type of nitrones are employed as nucleophilic precursors under the catalysis of a cinchona alkaloid-based thiourea substance, and effectively assembled with isatins-derived ketimines to accomplish the direct asymmetric aza-vinylogous-type Mannich reactions. A series of densely functionalized nitrones with vicinal tertiary-quaternary stereogenic centers are furnished in high yields (70%~97%) with good to excellent stereoselectivity (83%~99% ee, >19:1 dr). Moreover, subsequent[3+2] dipolar cycloaddition reactions between the chiral nitrones and activated alkenes can be realized in exclusive diastereoselectivity, producing complex spirocyclic indolenine architectures incorporating a hydrogenated isoxazole ring. These nitrones, as a new type of aza-vinylogous nucleophiles, may have a wide range of applications in asymmetric synthesis in the future. A representative procedure for the asymmetric aza-vinylogous-type Mannich reaction is as follows:nitrone 1 (0.1 mmol), ketimine 2 (0.11 mmol), catalyst C5 (0.01 or 0.02 mmol) are added into an oven-dried vial equipped with a magnetic stirbar. Xylene (1.0 mL) is added and the mixture is stirred at 50℃ and monitored by TLC. After completion, the residue is purified by flash column chromatography on silica gel eluting with petroleum ether/ethyl acetate (15:1 to 5:1) to afford the product 3.
  • 加载中
    1. [1]

      (a) Schneider, C.; Sickert, M. In Chiral Amine Synthesis, Ed.:Nugent, T. C., Wiley-VCH, Weinheim, 2010.
      (b) Roselló, M. S.; del Pozo, C.; Fustero, S. Synthesis 2016, 48, 2553.
      (c) Martin, S. F. Acc. Chem. Res. 2002, 35, 895.

    2. [2]

      (a) Yamaguchi, A.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10, 2319.
      (b) Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 3666.
      (c) Zhou, L.; Lin, L.; Ji, J.; Xie, M.; Liu, X.; Feng, X. Org. Lett. 2011, 13, 3056.
      (d) Guo, Y.-L.; Bai, J.-F.; Peng, L.; Wang, L.-L.; Jia, L.-N.; Luo, X.-Y.; Tian, F.; Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2012, 77, 8338.
      (e) Yin, L.; Takada, H.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2013, 125, 7451.
      (f) Guo, Y.; Zhang, Y.; Qi, L.; Tian, F.; Wang, L. RSC Adv. 2014, 4, 27286.
      (g) Nakamura, S.; Yamaji, R.; Hayashi, M. Chem. Eur. J. 2015, 21, 9615.

    3. [3]

      (a) Liu, T.-Y.; Cui, H.-L.; Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. J. Am. Chem. Soc. 2007, 129, 1878.
      (b) Niess, B.; Jϕrgensen, K. A. Chem. Commun. 2007, 1620.
      (c) Chen, Q.-A.; Zeng, W.; Wang, D.-W.; Zhou, Y.-G. Synlett 2009, 2009, 2236.
      (d) Xiong, X.-F.; Jia, Z.-J.; Du, W.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C. Chem. Commun. 2009, 6994.
      (e) Cheng, C.; Lu, X.; Ge, L.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. Org. Chem. Front. 2017, 4, 101.

    4. [4]

      Zhang, H.-J.; Shi, C.-Y.; Zhong, F.; Yin, L. J. Am. Chem. Soc. 2017, 139, 2196.  doi: 10.1021/jacs.6b13042

    5. [5]

      (a) Curti, C.; Rassu, G.; Zambrano, V.; Pinna, L.; Pelosi, G.; Sartori, A.; Battistini, L.; Zanardi, F.; Casiraghi, G. Angew. Chem. Int. Ed. 2012, 51, 6200.
      (b) Rassu, G.; Zambrano, V.; Pinna, L.; Curti, C.; Battistini, L.; Sartori, A.; Pelosi, G.; Zanardi, F.; Casiraghi, G. Adv. Synth. Catal. 2013, 355, 1881.
      (c) Chen, Q.; Wang, G.; Jiang, X.; Xu, Z.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1394.
      (d) Ranieri, B.; Sartori, A.; Curti, C.; Battistini, L.; Rassu, G.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Org. Lett. 2014, 16, 932.
      (e) Di Iorio, N.; Righi, P.; Ranieri, S.; Mazzanti, A.; Margutta, R. G.; Bencivenni, G. J. Org. Chem. 2015, 80, 7158.
      (f) Xiao, X.; Mei, H.; Chen, Q.; Zhao, X.; Lin, L.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 580.
      (g) Zheng, C.; Chen, W.-X.; Chen, F.-E. Asian J. Org. Chem. 2015, 4, 1044.
      (h) Han, J.-L.; Chang, C.-H. Chem. Commun. 2016, 52, 2322.
      (i) Tian, L.; Hu, X.-Q.; Li, Y.-H.; Xu, P.-F. Chem. Commun. 2013, 49, 7213.
      (j) Sun, Q.; Li, X.; Su, J.; Zhao, L.; Ma, M.; Zhu, Y.; Zhao, Y.; Zhu, R.; Yan, W.; Wang, K.; Wang, R. Adv. Synth. Catal. 2015, 357, 3187.
      (k) Li, X.; Su, J.; Liu, Z.; Zhu, Y.; Dong, Z.; Qiu, S.; Wang, J.; Lin, L.; Shen, Z.; Yan, W.; Wang, K.; Wang, R. Org. Lett. 2016, 18, 956.

    6. [6]

      Liu, Y.; Yang, Y.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Synlett 2015, 26, 67.

    7. [7]

      (a) Chen, Y.-R.; Zhan, G.; Du, W.; Chen, Y.-C. Adv. Synth. Catal. 2016, 358, 3759. For other examples with nitrone ylides, see:
      (b) Hanessian, S.; Bayrakdarian, M. Tetrahedron Lett. 2002, 43, 967.
      (c) Hanessian, S.; Bayrakdarian, M. Tetrahedron Lett. 2002, 43, 9441.
      (d) Merino, P.; Tejero, T.; Díez-Martínez, A.; Gültekin, Z. Eur. J. Org. Chem. 2011, 2011, 6567.
      (e) Merino, P.; Tejero, T.; Díez-Martínez, A. J. Org. Chem. 2014, 79, 2189.
      (f) Juste-Navarro, V.; Delso, L.; Tejero, T.; Merino, P. Chem. Eur. J. 2016, 22, 11527.
      (g) Prieto, L.; Juste-Navarro, V.; Uria, U.; Delso, I.; Reyes, E.; Tejero, T.; Carrillo, L.; Merino, P.; Vicario, J. L. Chem. Eur. J. 2017, 23, 2764.

    8. [8]

      Zhan, G.; Shi, M.-L.; Lin, W.-J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Chem. Eur. J. 2017, 23, 6286.  doi: 10.1002/chem.201701290

    9. [9]

      For selected examples, see:(a) Feng, J.; Yan, W.; Wang, D.; Li, P.; Sun, Q.; Wang, R. Chem. Commun. 2012, 48, 8003.
      (b) Hara, N.; Nakamura, S.; Sano, M.; Tamura, R.; Funahashi, Y.; Shibata, N. Chem. Eur. J. 2012, 18, 9276.
      (c) Yan, W.; Wang, D.; Feng, J.; Li, P.; Zhao, D.; Wang, R. Org. Lett. 2012, 14, 2512.
      (d) Zhao, J.; Fang, B.; Luo, W.; Hao, X.; Liu, X.; Lin, L.; Feng, X. Angew. Chem. Int. Ed. 2015, 54, 241.
      (e) Wang, Y.; Cao, Z.; Niu, Y.; Zhao, X.; Zhou, J. Acta Chim. Sinica 2014, 72, 867. (王雨卉, 曹中艳, 牛艳霏, 赵小莉, 周剑, 化学学报, 2014, 72, 867.)
      (f) Liu, Y.-L.; Zhou, J. Chem. Commun. 2013, 49, 4421.
      (g) Yin, X.; Xue, P.; Dong, K.; Liao, K.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2015, 73, 685. (尹小平, 徐鹏巍, 董坤, 廖奎, 周锋, 周剑, 化学学报, 2015, 73, 685.)

    10. [10]

      (a) Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y. Synlett 2005, 603.
      (b) Connon, S. J. Chem. Commun. 2008, 2499.
      (c) Takemoto, Y. Chem. Pharm. Bull. 2010, 58, 593.
      (d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2006, 45, 1520.

    11. [11]

      CCDC-1558319(4) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(6)
  • Abstract views(1159)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return