Citation: Wang Juan, Zou Qianli, Yan Xuehai. Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization[J]. Acta Chimica Sinica, ;2017, 75(10): 933-942. doi: 10.6023/A17060272 shu

Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization

  • Corresponding author: Yan Xuehai, yanxh@ipe.ac.cn
  • Received Date: 18 June 2017
    Available Online: 7 October 2017

    Fund Project: the National Natural Science Foundation of China 91434103the National Natural Science Foundation of China 21473208Project supported by the National Natural Science Foundation of China (Nos. 21522307, 21473208 and 91434103)the National Natural Science Foundation of China 21522307

Figures(15)

  • Biomolecular self-assembly plays a significant role for physiological function. Inspired by this, the construction of functional structures and architectures by biomolecular self-assembly has attracted tremendous attentions. Peptides can be assembled into diverse nanostructures, exhibiting important potential for biomedical and green-life technology applications. How to achieve the structural precise regulation of various nanostructures and functionalization by precise control of structures is the two key challenges in the field of peptide self-assembly. As the assembly process is a spontaneous thermodynamic and kinetic driven process, and is determined by the cooperation of various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, π-π stacking, hydrophobic, and van der Waals interactions, the reasonable regulation of these non-covalent interactions is a critical pathway to achieve the two goals. To modulate these non-covalent interactions, one of the common used methods is to change the kinetic factors/external environment, including pH, ionic strength, and temperature, etc. These kinetic factors can effectively influence the interactions between peptides and solvents, resulting in dynamic and responsive variations in structures through multiple length scales and ultimate morphologies. However, the fatal disadvantage is the lacking of the precise regulation of assembled structures in the molecular level with consideration of both thermodynamics and kinetics. Compared with changing the external environment, the specific and precise molecular design is more favorable to achieve the structural precise regulation. The molecular structures and the component of building blocks can be rationally designed. For example, one can modulate the interactions between two or more than two building blocks by changing the physicochemical properties of each building block, enabling self-assembly and structural diversity of the final nanostructures. Furthermore, by combining peptides and other functional biomolecules (such as porphyrins), the functionalization of assembled nanostructures and architectures can be achieved more easily and flexibly. In this review, we will focus on the structural precise regulation and the functionalization of assembled peptide nanostructures. It is believed that the precise regulation of nanostructures is promising to promote the development of peptide-based materials towards green-life technology applications.
  • 加载中
    1. [1]

      Mahadevi, A. S.; Sastry, G. N. Chem. Rev. 2016, 116, 2775.  doi: 10.1021/cr500344e

    2. [2]

      Gao, Y.; Hu, J.; Ju, Y. Acta Chim. Sinica 2016, 74, 312.
       

    3. [3]

      Boyle, A. L.; Woolfson, D. N. Chem. Soc. Rev. 2011, 40, 4295.  doi: 10.1039/c0cs00152j

    4. [4]

      Smith, K. H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Chem. Soc. Rev. 2011, 40, 4563.  doi: 10.1039/c1cs15064b

    5. [5]

      Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.  doi: 10.1039/C4CS00247D

    6. [6]

      Hauser, C. A.; Zhang, S. Nature 2010, 468, 516.  doi: 10.1038/468516a

    7. [7]

      De Santis, E.; Ryadnov, M. G. Chem. Soc. Rev. 2015, 44, 8288.  doi: 10.1039/C5CS00470E

    8. [8]

      Ulijn, R. V.; Woolfson, D. N. Chem. Soc. Rev. 2010, 39, 3349.  doi: 10.1039/c0cs90015j

    9. [9]

      Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J. P.; Aono, M. Mater. Horiz. 2015, 2, 406.  doi: 10.1039/C5MH00012B

    10. [10]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.  doi: 10.1021/cr500633b

    11. [11]

      Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J. P. Adv. Mater. 2016, 28, 1251.  doi: 10.1002/adma.201502545

    12. [12]

      Wang, J.; Liu, K.; Xing, R.; Yan, X. Chem. Soc. Rev. 2016, 45, 5589.  doi: 10.1039/C6CS00176A

    13. [13]

      Hamley, I. W. Angew. Chem., Int. Ed. 2014, 53, 6866.  doi: 10.1002/anie.201310006

    14. [14]

      Dasgupta, A.; Mondal, J. H.; Das, D. RSC Adv. 2013, 3, 9117.  doi: 10.1039/c3ra40234g

    15. [15]

      Hauser, C. A. E.; Zhang, S. Chem. Soc. Rev. 2010, 39, 2780.  doi: 10.1039/b921448h

    16. [16]

      Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ouyang, Z.-C. Chem. Eur. J. 2008, 14, 5974.  doi: 10.1002/chem.v14:19

    17. [17]

      Levin, A.; Mason, T. O.; Adler-Abramovich, L.; Buell, A. K.; Meisl, G.; Galvagnion, C.; Bram, Y.; Stratford, S. A.; Dobson, C. M.; Knowles, T. P. J.; Gazit, E. Nat. Commun. 2014, 5, 5219.  doi: 10.1038/ncomms6219

    18. [18]

      Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 8540.  doi: 10.1021/ja503882s

    19. [19]

      Kim, J.; Han, T. H.; Kim, Y.-I.; Park, J. S.; Choi, J.; Churchill, D. C.; Kim, S. O.; Ihee, H. Adv. Mater. 2010, 22, 583.  doi: 10.1002/adma.v22:5

    20. [20]

      Wang, M.; Du, L.; Wu, X.; Xiong, S.; Chu, P. K. ACS Nano 2011, 5, 4448.  doi: 10.1021/nn2016524

    21. [21]

      Wang, Y.; Huang, R.; Qi, W.; Xie, Y.; Wang, M.; Su, R.; He, Z. Small 2015, 11, 2893.  doi: 10.1002/smll.201403645

    22. [22]

      Li, Q.; Jia, Y.; Dai, L. R.; Yang, Y.; Li, J. B. ACS Nano 2015, 9, 2689.  doi: 10.1021/acsnano.5b00623

    23. [23]

      Mason, T. O.; Chirgadze, D. Y.; Levin, A.; Adler-Abramovich, L.; Gazit, E.; Knowles, T. P. J.; Buell, A. K. ACS Nano 2014, 8, 1243.  doi: 10.1021/nn404237f

    24. [24]

      Moyer, T. J.; Finbloom, J. A.; Chen, F.; Toft, D. J.; Cryns, V. L.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 14746.  doi: 10.1021/ja5042429

    25. [25]

      Wang, Y.; Qi, W.; Huang, R.; Yang, X.; Wang, M.; Su, R.; He, Z. J. Am. Chem. Soc. 2015, 137, 7869.  doi: 10.1021/jacs.5b03925

    26. [26]

      Zhao, Y. R.; Deng, L.; Wang, J. Q.; Xu, H.; Lu, J. R. Langmuir 2015, 31, 12975.  doi: 10.1021/acs.langmuir.5b02303

    27. [27]

      Cai, C. H.; Lin, J. P.; Lu, Y. Q.; Zhang, Q.; Wang, L. Q. Chem. Soc. Rev. 2016, 45, 5985.  doi: 10.1039/C6CS00013D

    28. [28]

      Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.  doi: 10.1039/C4CS00271G

    29. [29]

      Xu, J.; Wang, Z.; Zhang, X. Acta Chim. Sinica 2016, 74, 467.
       

    30. [30]

      Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815.

    31. [31]

      Wang, J.; Sun, Y.; Dai, J.; Zhao, Y.; Cao, M.; Wang, D.; Xu, H. Acta Phys.-Chim. Sin. 2015, 31, 1365.  doi: 10.3866/PKU.WHXB201505051

    32. [32]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415.  doi: 10.3866/PKU.WHXB201511191
       

    33. [33]

      Yuan, D.; Xu, B. J. Mater. Chem. B 2016, 4, 5638.  doi: 10.1039/C6TB01592A

    34. [34]

      Jia, Y.; Li, Q.; Li, J. Chin. Sci. Bull. 2017, 62, 469.
       

    35. [35]

      Li, Y.; Mao, C.; Deng, Z. Chin. J. Chem. 2017, 35, 801.  doi: 10.1002/cjoc.v35.6

    36. [36]

      Zhou, P.; Deng, L.; Wang, Y. T.; Lu, J. R.; Xu, H. Langmuir 2016, 32, 4662.  doi: 10.1021/acs.langmuir.6b00287

    37. [37]

      Zhao, Y. R.; Deng, L.; Yang, W.; Wang, D.; Pambou, E.; Lu, Z. M.; Li, Z. Y.; Wang, J. Q.; King, S.; Rogers, S.; Xu, H.; Lu, J. R. Chem. Eur. J. 2016, 22, 11394.  doi: 10.1002/chem.201601309

    38. [38]

      Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Langmuir 2013, 29, 13457.  doi: 10.1021/la402441w

    39. [39]

      Wang, M.; Zhou, P.; Wang, J. Q.; Zhao, Y. R.; Ma, H. C.; Lu, J. R.; Xu, H. J. Am. Chem. Soc. 2017, 139, 4185.  doi: 10.1021/jacs.7b00847

    40. [40]

      Wang, J.; Liu, K.; Yan, L.; Wang, A.; Bai, S.; Yan, X. ACS Nano 2016, 10, 2138.  doi: 10.1021/acsnano.5b06567

    41. [41]

      Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B. Angew. Chem., Int. Ed. 2015, 54, 5705.  doi: 10.1002/anie.201412448

    42. [42]

      Zhao, F. F.; Shen, G. Z.; Chen, C. J.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Chem. Eur. J. 2014, 20, 6880.  doi: 10.1002/chem.201400348

    43. [43]

      Zhang, N.; Zhao, F. F.; Zou, Q. L.; Li, Y. X.; Ma, G. H.; Yan, X. H. Small 2016, 12, 5936.  doi: 10.1002/smll.201602339

    44. [44]

      Zou, Q.; Zhang, L.; Yan, X.; Wang, A.; Ma, G.; Li, J.; Möhwald, H.; Mann, S. Angew. Chem., Int. Ed. 2014, 53, 2366.  doi: 10.1002/anie.201308792

    45. [45]

      Liu, K.; Xing, R. R.; Chen, C. J.; Shen, G. Z.; Yan, L. Y.; Zou, Q. L.; Ma, G. H.; Mohwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2015, 54, 500.
       

    46. [46]

      Liu, K.; Kang, Y.; Ma, G. H.; Mohwald, H.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 16738.  doi: 10.1039/C6CP01358A

    47. [47]

      Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. J. Am. Chem. Soc. 2017, 139, 1921.  doi: 10.1021/jacs.6b11382

    48. [48]

      Xing, R. R.; Jiao, T. F.; Yan, L. Y.; Ma, G. H.; Liu, L.; Dai, L. R.; Li, J. B.; Mohwald, H.; Yan, X. H. ACS Appl. Mater. Interfaces 2015, 7, 24733.  doi: 10.1021/acsami.5b07453

    49. [49]

      Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Adv. Mater. 2016, 28, 3669.  doi: 10.1002/adma.201600284

    50. [50]

      Yan, X.; Zhu, P.; Fei, J.; Li, J. Adv. Mater. 2010, 22, 1283.  doi: 10.1002/adma.v22:11

    51. [51]

      Li, J. F.; Li, X. D.; Xu, J.; Wang, Y.; Wu, L. X.; Wang, Y. Q.; Wang, L. Y.; Lee, M.; Li, W. Chem. Eur. J. 2016, 22, 15751.  doi: 10.1002/chem.201602449

    52. [52]

      Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Angew. Chem., Int. Ed. 2016, 55, 2592.  doi: 10.1002/anie.201511276

    53. [53]

      Adhikari, B.; Nanda, J.; Banerjee, A. Soft Matter 2011, 7, 8913.  doi: 10.1039/c1sm05907f

    54. [54]

      Ma, M.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. J. Am. Chem. Soc. 2010, 132, 2719.  doi: 10.1021/ja9088764

    55. [55]

      Zhou, J.; Du, X.; Gao, Y.; Shi, J.; Xu, B. J. Am. Chem. Soc. 2014, 136, 2970.  doi: 10.1021/ja4127399

    56. [56]

      Li, Y. X.; Yan, L. Y.; Liu, K.; Wang, J.; Wang, A. H.; Bai, S.; Yan, X. H. Small 2016, 19, 2575.

    57. [57]

      Li, Q.; Ma, H. C.; Jia, Y.; Li, J. B.; Zhu, B. H. Chem. Commun. 2015, 51, 7219.  doi: 10.1039/C5CC01554E

    58. [58]

      Wang, J.; Shen, G. Z.; Ma, K.; Jiao, T. F.; Liu, K.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 30926.  doi: 10.1039/C6CP06150H

    59. [59]

      Fei, J. B.; Zhang, H.; Wang, A. H.; Qin, C. C.; Xue, H. M.; Li, J. B. Adv. Healthcare Mater. 2017, 6, 1601198.  doi: 10.1002/adhm.v6.7

    60. [60]

      Yan, X.; Li, J.; Möhwald, H. Adv. Mater. 2011, 23, 2796.  doi: 10.1002/adma.201100353

    61. [61]

      Liu, K.; Xing, R. R.; Li, Y. X.; Zou, Q. L.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 12503.  doi: 10.1002/anie.201606795

    62. [62]

      Liu, K.; Yuan, C.; Zou, Q.; Xie, Z.; Yan, X. Angew. Chem., Int. Ed. 2017, 56, 7876.  doi: 10.1002/anie.201704678

    63. [63]

      Li, N.; Guo, C. H.; Duan, Z. Y.; Yu, L. Z.; Luo, K.; Lu, J.; Gu, Z. W. J. Mater. Chem. B 2016, 4, 3760.  doi: 10.1039/C6TB00688D

    64. [64]

      Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. Adv. Mater. 2015, 27, 6125.  doi: 10.1002/adma.201502598

    65. [65]

      Liu, Y.; Zhang, D.; Qiao, Z. Y.; Qi, G. B.; Liang, X. J.; Chen, X. G.; Wang, H. Adv. Mater. 2015, 27, 5034.  doi: 10.1002/adma.201501502

    66. [66]

      Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Adv. Mater. 2017, 29, 1605021.  doi: 10.1002/adma.v29.12

    67. [67]

      Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Adv. Funct. Mater. 2016, 26, 4351.  doi: 10.1002/adfm.v26.24

    68. [68]

      Ma, K.; Xing, R. R.; Jiao, T. F.; Shen, G. Z.; Chen, C. J.; Li, J. B.; Yan, X. H. ACS Appl. Mater. Interfaces 2016, 8, 30759.  doi: 10.1021/acsami.6b10754

    69. [69]

      Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 3036.  doi: 10.1002/anie.201509810

    70. [70]

      Sun, J. J.; Guo, Y.; Xing, R. R.; Jiao, T. F.; Zou, Q. L.; Yan, X. H. Colloids Surf., A 2017, 514, 155.  doi: 10.1016/j.colsurfa.2016.11.062

    71. [71]

      Chen, C. J.; Li, S. K.; Liu, K.; Ma, G. H.; Yan, X. H. Small 2016, 12, 4719.  doi: 10.1002/smll.v12.34

    72. [72]

      Qin, X.; Xie, W.; Tian, S.; Cai, J.; Yuan, H.; Yu, Z.; Butterfoss, G. L.; Khuong, A. C.; Gross, R. A. Chem. Commun. 2013, 49, 4839.  doi: 10.1039/c3cc41794h

    73. [73]

      Webber, M. J.; Newcomb, C. J.; Bitton, R.; Stupp, S. I. Soft Matter 2011, 7, 9665.  doi: 10.1039/c1sm05610g

    74. [74]

      Guilbaud, J.-B.; Rochas, C.; Miller, A. F.; Saiani, A. Biomacromolecules 2013, 14, 1403.  doi: 10.1021/bm4000663

    75. [75]

      Yang, Z.; Liang, G.; Xu, B. Acc. Chem. Res. 2008, 41, 315.  doi: 10.1021/ar7001914

    76. [76]

      Gao, Y.; Yang, Z.; Kuang, Y.; Ma, M.-L.; Li, J.; Zhao, F.; Xu, B. Biopolymers 2010, 94, 19.  doi: 10.1002/bip.21321

    77. [77]

      Zhou, J.; Du, X.; Yamagata, N.; Xu, B. J. Am. Chem. Soc. 2016, 138, 3813.  doi: 10.1021/jacs.5b13541

    78. [78]

      Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Nat. Commun. 2012, 3, 1033.  doi: 10.1038/ncomms2040

    79. [79]

      Li, X.; Du, X.; Li, J.; Gao, Y.; Pan, Y.; Shi, J.; Zhou, N.; Xu, B. Langmuir 2012, 28, 13512.  doi: 10.1021/la302583a

    80. [80]

      Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B. Biomacromolecules 2014, 15, 3559.  doi: 10.1021/bm5010355

    81. [81]

      Yuan, C.; Li, S.; Zou, Q.; Ren, Y.; Yan, X. Phys. Chem. Chem. Phys. 2017, 10.1039/c7cp01923h.  doi: 10.1039/c7cp01923h

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    11. [11]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(139)
  • Abstract views(5108)
  • HTML views(1819)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return