Citation: Liu Gang, Wang Tie. Research Progress in Thermoelectric Materials for Sensor Application[J]. Acta Chimica Sinica, ;2017, 75(11): 1029-1035. doi: 10.6023/A17060259 shu

Research Progress in Thermoelectric Materials for Sensor Application

  • Corresponding author: Liu Gang, 
  • Received Date: 9 June 2017
    Available Online: 26 November 2017

    Fund Project: the 1000 Young Talents Program, the National Natural Science Foundation of China 21422507the 1000 Young Talents Program, the National Natural Science Foundation of China 21635002Project supported by the 1000 Young Talents Program, the National Natural Science Foundation of China (Nos. 21422507, 21635002, 21321003) and the Chinese Academy of Sciencesthe 1000 Young Talents Program, the National Natural Science Foundation of China 21321003

Figures(8)

  • Sensors are core components for modern intelligent industry. Thermoelectric materials, which have significant influence on the design and functions for a variety types of sensors, attracted more and more attentions recently. In this paper, different categories of thermoelectric materials, such as silicon, carbon, lead, tellurium, precious metal, organic and catalysis based thermoelectric materials, are discussed in detail on their high sensitivity, fast response, and stability as potential candidates for specific sensors. The silicon-based thermoelectric materials are of particular efficiency in sensor data process and transmission due to their high purity. Carbon-based thermoelectric materials, including graphene and carbon nanotubes, advantage in their excellent conductivity, flexible structure, and manufactural controllability. Lead-based thermoelectric materials are mainly used as infrared sensors because of their natural sensitivity to infrared specially. Telluride-based thermoelectric materials, especially Bismuth Telluride and Antimony Telluride, can form PN junction and be applied as soft sensors. Products based on these materials have already been developed for detecting pulses. The precious metals-based thermoelectric materials, e.g. gold or silver, are commonly used as dopant in the organic thermoelectric materials to adjust their sensitivity. Organic thermoelectric materials benefit from their good stability and variability, while copper-bismuth alloy based thermoelectric materials are widely investigated to make gas sensors. In general, the inorganic thermoelectric materials normally feature high electrical conductivity, which enhances the sensitivity of sensors, whereas the organic thermoelectric materials have high stability to maintain the stability of sensors. At present, the miniaturization of sensors is the mainstream for both material study and device fabrication. Low dimensional thermoelectric materials, especially nano-scaled materials such as quantum dots, nanowires, etc., will for sure promote the progressing of sensor development. For example, carbon nanotube can be knit into specific sheets as we designed with tunable conductivity, which makes them of remarkable industrial potentials as soft sensors. Designing and fabricating multi-functional and space-saving thermoelectric materials with well aligned and effectively assembled nanomaterials would be a feasible and practicable approach for future sensors.
  • 加载中
    1. [1]

      Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Nara-simhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. Nature Nanotech. 2009, 4, 235.  doi: 10.1038/nnano.2008.417

    2. [2]

      Li, J. F.; Liu, W.; Zhao, L. D.; Zhou, M. NPG Asia Mater. 2010, 2, 152.  doi: 10.1038/asiamat.2010.138

    3. [3]

      Rama, V.; Siivola, E.; Thomas, C.; O'Quinn, B. Nature 2001, 413, 597.  doi: 10.1038/35098012

    4. [4]

      Delaire, O.; Ma, J.; Marty, K.; May, A. F.; McGuire, M. A.; Du, M. H.; Singh, D. J.; Podlesnyak, A.; Ehlers, G.; Lumsden, M. D.; Sales, B. C. Nature Mater. 2011, 10, 614.  doi: 10.1038/nmat3035

    5. [5]

      Coucheron, D. A.; Fokine, M.; Patil, N.; Breiby, D. W.; Buset, O. T.; Healy, N.; Peacock, A. C.; Hawkins, T.; Jones, M.; Ballato, J.; Gibson, U. J. Nat. Commun. 2016, 7, 13265.  doi: 10.1038/ncomms13265

    6. [6]

      (a) Xie, P.; Xiong, Q.; Fang, Y.; Qing, Q.; Lieber, C. M. Nature Nanotech. 2011, 7, 119; (b) Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A., 3rd; Heath, J. R. Nature 2008, 451, 168; (c) Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163.

    7. [7]

      Mao, J.; Liu, Z.; Ren, Z. npj Quantum Materials 2016, 1, 16028.  doi: 10.1038/npjquantmats.2016.28

    8. [8]

      McGrail, B. T.; Sehirlioglu, A.; Pentzer, E. Angew. Chem. 2015, 54, 1710.  doi: 10.1002/anie.201408431

    9. [9]

      Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Muller, C. Chem. Soc. Rev. 2016, 45, 6147.  doi: 10.1039/C6CS00149A

    10. [10]

      Wang, Z.; Leonov, V.; Fiorini, P.; Van Hoof, C. Sens. Actuators, A:Physical 2009, 156, 95.  doi: 10.1016/j.sna.2009.02.028

    11. [11]

      Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74, 664.
       

    12. [12]

      He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Appl. Energy 2015, 143, 1.  doi: 10.1016/j.apenergy.2014.12.075

    13. [13]

      Marichy, C.; Bechelany, M.; Pinna, N. Adv. Mater. 2012, 24, 1017.  doi: 10.1002/adma.201104129

    14. [14]

      Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z. L. Science Advances 2017, 3, e1700015.  doi: 10.1126/sciadv.1700015

    15. [15]

      Zhang, C.; Meng, Y.; Kuang, J.; Xu, L. Acta Chim. Sinica 2015, 73, 409.
       

    16. [16]

      Qian, X.; Su, M.; Li, F.; Song, Y. Acta Chim. Sinica 2016, 74, 565.  doi: 10.3866/PKU.WHXB201511301
       

    17. [17]

      Zhu, W.; Deng, Y.; Cao, L. Nano Energy 2017, 34, 463.  doi: 10.1016/j.nanoen.2017.03.020

    18. [18]

      Zhang, F.; Zang, Y.; Huang, D.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 8356.  doi: 10.1038/ncomms9356

    19. [19]

      Wang, H.; He, Y. Sensors 2017, 17, 268.  doi: 10.3390/s17020268

    20. [20]

      Rao, S.; Pangallo, G.; Della Corte, F. G. Sensors 2016, 16, 67.  doi: 10.3390/s16010067

    21. [21]

      Li, W.; Feng, Z.; Dai, E.; Xu, J.; Bai, G. Sensors 2016, 16, 1880.

    22. [22]

      Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Small 2014, 10, 4042.

    23. [23]

      Singh, S.; Lee, S.; Kang, H.; Lee, J.; Baik, S. Energy Storage Materials 2016, 3, 55.  doi: 10.1016/j.ensm.2016.01.004

    24. [24]

      Quan, Z.; Luo, Z.; Wang, Y.; Xu, H.; Wang, C.; Wang, Z.; Fang, J. Nano Lett. 2013, 13, 3729.  doi: 10.1021/nl4016705

    25. [25]

      Hong, M.; Chen, Z. G.; Yang, L.; Zou, J. Nanoscale 2016, 8, 8681.  doi: 10.1039/C6NR00719H

    26. [26]

      Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Nature Mater. 2003, 2, 528.  doi: 10.1038/nmat943

    27. [27]

      Galli, G.; Donadio, D. Nature Nanotech. 2010, 5, 701.  doi: 10.1038/nnano.2010.199

    28. [28]

      Zhou, H.; Kropelnicki, P.; Lee, C. Nanoscale 2015, 7, 532.  doi: 10.1039/C4NR04184D

    29. [29]

      Jung, S. W.; Shin, J. Y.; Pi, K.; Goo, Y. S.; Cho, D. D. Sensors 2016, 16, 2035.  doi: 10.3390/s16122035

    30. [30]

      Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Adv. Mater. 2012, 24, 5782.  doi: 10.1002/adma.201201482

    31. [31]

      Liu, Q.; Chen, J.; Li, Y.; Shi, G. ACS Nano 2016, 10, 7901.  doi: 10.1021/acsnano.6b03813

    32. [32]

      Wu, G.; Zhang, Z. G.; Li, Y.; Gao, C.; Wang, X.; Chen, G. ACS Nano 2017, 11, 5746.  doi: 10.1021/acsnano.7b01279

    33. [33]

      Chen, J.; Wang, L.; Gui, X.; Lin, Z.; Ke, X.; Hao, F.; Li, Y.; Jiang, Y.; Wu, Y.; Shi, X.; Chen, L. Carbon 2017, 114, 1.  doi: 10.1016/j.carbon.2016.11.074

    34. [34]

      Ong, W.-L.; Rupich, S. M.; Talapin, D. V.; McGaughey, A. J. H.; Malen, J. A. Nature Mater. 2013, 12, 410.  doi: 10.1038/nmat3596

    35. [35]

      Lu, Z.; Zhang, H.; Mao, C.; Li, C. M. Appl. Energy 2016, 164, 57.  doi: 10.1016/j.apenergy.2015.11.038

    36. [36]

      Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Adv. Mater. 2016, 28, 9881.  doi: 10.1002/adma.201602251

    37. [37]

      Cao, Z.; Koukharenko, E.; Tudor, M. J.; Torah, R. N.; Beeby, S. P. Sens. Actuators A:Physical 2016, 238, 196.  doi: 10.1016/j.sna.2015.12.016

    38. [38]

      Yadav, A.; Pipe, K. P.; Shtein, M. J. Power Sources 2008, 175, 909.  doi: 10.1016/j.jpowsour.2007.09.096

    39. [39]

      Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nature Rev. Mater. 2016, 1, 16050.  doi: 10.1038/natrevmats.2016.50

    40. [40]

      Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nature Mater. 2011, 10, 429.  doi: 10.1038/nmat3012

    41. [41]

      Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Adv. Mater. 2014, 26, 6829.  doi: 10.1002/adma.v26.40

    42. [42]

      Ju, H.; Kim, J. Chem. Eng. J. 2016, 297, 66.  doi: 10.1016/j.cej.2016.03.137

    43. [43]

      Song, H.; Cai, K. Energy 2017, 125, 519.  doi: 10.1016/j.energy.2017.01.037

    44. [44]

      Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Nature Mater. 2013, 12, 719-23.  doi: 10.1038/nmat3635

    45. [45]

      Park, S. C.; Yoon, S. I.; Lee, C. I.; Kim, Y. J.; Song, S. Analyst 2009, 134, 236.  doi: 10.1039/B807882C

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    9. [9]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    12. [12]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(34)
  • Abstract views(3147)
  • HTML views(476)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return