Citation: Liu Gang, Wang Tie. Research Progress in Thermoelectric Materials for Sensor Application[J]. Acta Chimica Sinica, ;2017, 75(11): 1029-1035. doi: 10.6023/A17060259
-
Sensors are core components for modern intelligent industry. Thermoelectric materials, which have significant influence on the design and functions for a variety types of sensors, attracted more and more attentions recently. In this paper, different categories of thermoelectric materials, such as silicon, carbon, lead, tellurium, precious metal, organic and catalysis based thermoelectric materials, are discussed in detail on their high sensitivity, fast response, and stability as potential candidates for specific sensors. The silicon-based thermoelectric materials are of particular efficiency in sensor data process and transmission due to their high purity. Carbon-based thermoelectric materials, including graphene and carbon nanotubes, advantage in their excellent conductivity, flexible structure, and manufactural controllability. Lead-based thermoelectric materials are mainly used as infrared sensors because of their natural sensitivity to infrared specially. Telluride-based thermoelectric materials, especially Bismuth Telluride and Antimony Telluride, can form PN junction and be applied as soft sensors. Products based on these materials have already been developed for detecting pulses. The precious metals-based thermoelectric materials, e.g. gold or silver, are commonly used as dopant in the organic thermoelectric materials to adjust their sensitivity. Organic thermoelectric materials benefit from their good stability and variability, while copper-bismuth alloy based thermoelectric materials are widely investigated to make gas sensors. In general, the inorganic thermoelectric materials normally feature high electrical conductivity, which enhances the sensitivity of sensors, whereas the organic thermoelectric materials have high stability to maintain the stability of sensors. At present, the miniaturization of sensors is the mainstream for both material study and device fabrication. Low dimensional thermoelectric materials, especially nano-scaled materials such as quantum dots, nanowires, etc., will for sure promote the progressing of sensor development. For example, carbon nanotube can be knit into specific sheets as we designed with tunable conductivity, which makes them of remarkable industrial potentials as soft sensors. Designing and fabricating multi-functional and space-saving thermoelectric materials with well aligned and effectively assembled nanomaterials would be a feasible and practicable approach for future sensors.
-
Keywords:
- sensor,
- thermoelectric materials,
- silicon nanowire,
- graphene
-
-
[1]
Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Nara-simhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. Nature Nanotech. 2009, 4, 235. doi: 10.1038/nnano.2008.417
-
[2]
Li, J. F.; Liu, W.; Zhao, L. D.; Zhou, M. NPG Asia Mater. 2010, 2, 152. doi: 10.1038/asiamat.2010.138
-
[3]
Rama, V.; Siivola, E.; Thomas, C.; O'Quinn, B. Nature 2001, 413, 597. doi: 10.1038/35098012
-
[4]
Delaire, O.; Ma, J.; Marty, K.; May, A. F.; McGuire, M. A.; Du, M. H.; Singh, D. J.; Podlesnyak, A.; Ehlers, G.; Lumsden, M. D.; Sales, B. C. Nature Mater. 2011, 10, 614. doi: 10.1038/nmat3035
-
[5]
Coucheron, D. A.; Fokine, M.; Patil, N.; Breiby, D. W.; Buset, O. T.; Healy, N.; Peacock, A. C.; Hawkins, T.; Jones, M.; Ballato, J.; Gibson, U. J. Nat. Commun. 2016, 7, 13265. doi: 10.1038/ncomms13265
-
[6]
(a) Xie, P.; Xiong, Q.; Fang, Y.; Qing, Q.; Lieber, C. M. Nature Nanotech. 2011, 7, 119; (b) Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A., 3rd; Heath, J. R. Nature 2008, 451, 168; (c) Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163.
-
[7]
Mao, J.; Liu, Z.; Ren, Z. npj Quantum Materials 2016, 1, 16028. doi: 10.1038/npjquantmats.2016.28
-
[8]
McGrail, B. T.; Sehirlioglu, A.; Pentzer, E. Angew. Chem. 2015, 54, 1710. doi: 10.1002/anie.201408431
-
[9]
Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Muller, C. Chem. Soc. Rev. 2016, 45, 6147. doi: 10.1039/C6CS00149A
-
[10]
Wang, Z.; Leonov, V.; Fiorini, P.; Van Hoof, C. Sens. Actuators, A:Physical 2009, 156, 95. doi: 10.1016/j.sna.2009.02.028
-
[11]
Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74, 664.
-
[12]
He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Appl. Energy 2015, 143, 1. doi: 10.1016/j.apenergy.2014.12.075
-
[13]
Marichy, C.; Bechelany, M.; Pinna, N. Adv. Mater. 2012, 24, 1017. doi: 10.1002/adma.201104129
-
[14]
Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z. L. Science Advances 2017, 3, e1700015. doi: 10.1126/sciadv.1700015
-
[15]
Zhang, C.; Meng, Y.; Kuang, J.; Xu, L. Acta Chim. Sinica 2015, 73, 409.
-
[16]
Qian, X.; Su, M.; Li, F.; Song, Y. Acta Chim. Sinica 2016, 74, 565. doi: 10.3866/PKU.WHXB201511301
-
[17]
Zhu, W.; Deng, Y.; Cao, L. Nano Energy 2017, 34, 463. doi: 10.1016/j.nanoen.2017.03.020
-
[18]
Zhang, F.; Zang, Y.; Huang, D.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 8356. doi: 10.1038/ncomms9356
-
[19]
Wang, H.; He, Y. Sensors 2017, 17, 268. doi: 10.3390/s17020268
-
[20]
Rao, S.; Pangallo, G.; Della Corte, F. G. Sensors 2016, 16, 67. doi: 10.3390/s16010067
-
[21]
Li, W.; Feng, Z.; Dai, E.; Xu, J.; Bai, G. Sensors 2016, 16, 1880.
-
[22]
Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Small 2014, 10, 4042.
-
[23]
Singh, S.; Lee, S.; Kang, H.; Lee, J.; Baik, S. Energy Storage Materials 2016, 3, 55. doi: 10.1016/j.ensm.2016.01.004
-
[24]
Quan, Z.; Luo, Z.; Wang, Y.; Xu, H.; Wang, C.; Wang, Z.; Fang, J. Nano Lett. 2013, 13, 3729. doi: 10.1021/nl4016705
-
[25]
Hong, M.; Chen, Z. G.; Yang, L.; Zou, J. Nanoscale 2016, 8, 8681. doi: 10.1039/C6NR00719H
-
[26]
Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Nature Mater. 2003, 2, 528. doi: 10.1038/nmat943
-
[27]
Galli, G.; Donadio, D. Nature Nanotech. 2010, 5, 701. doi: 10.1038/nnano.2010.199
-
[28]
Zhou, H.; Kropelnicki, P.; Lee, C. Nanoscale 2015, 7, 532. doi: 10.1039/C4NR04184D
-
[29]
Jung, S. W.; Shin, J. Y.; Pi, K.; Goo, Y. S.; Cho, D. D. Sensors 2016, 16, 2035. doi: 10.3390/s16122035
-
[30]
Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Adv. Mater. 2012, 24, 5782. doi: 10.1002/adma.201201482
-
[31]
Liu, Q.; Chen, J.; Li, Y.; Shi, G. ACS Nano 2016, 10, 7901. doi: 10.1021/acsnano.6b03813
-
[32]
Wu, G.; Zhang, Z. G.; Li, Y.; Gao, C.; Wang, X.; Chen, G. ACS Nano 2017, 11, 5746. doi: 10.1021/acsnano.7b01279
-
[33]
Chen, J.; Wang, L.; Gui, X.; Lin, Z.; Ke, X.; Hao, F.; Li, Y.; Jiang, Y.; Wu, Y.; Shi, X.; Chen, L. Carbon 2017, 114, 1. doi: 10.1016/j.carbon.2016.11.074
-
[34]
Ong, W.-L.; Rupich, S. M.; Talapin, D. V.; McGaughey, A. J. H.; Malen, J. A. Nature Mater. 2013, 12, 410. doi: 10.1038/nmat3596
-
[35]
Lu, Z.; Zhang, H.; Mao, C.; Li, C. M. Appl. Energy 2016, 164, 57. doi: 10.1016/j.apenergy.2015.11.038
-
[36]
Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Adv. Mater. 2016, 28, 9881. doi: 10.1002/adma.201602251
-
[37]
Cao, Z.; Koukharenko, E.; Tudor, M. J.; Torah, R. N.; Beeby, S. P. Sens. Actuators A:Physical 2016, 238, 196. doi: 10.1016/j.sna.2015.12.016
-
[38]
Yadav, A.; Pipe, K. P.; Shtein, M. J. Power Sources 2008, 175, 909. doi: 10.1016/j.jpowsour.2007.09.096
-
[39]
Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nature Rev. Mater. 2016, 1, 16050. doi: 10.1038/natrevmats.2016.50
-
[40]
Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nature Mater. 2011, 10, 429. doi: 10.1038/nmat3012
-
[41]
Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Adv. Mater. 2014, 26, 6829. doi: 10.1002/adma.v26.40
-
[42]
Ju, H.; Kim, J. Chem. Eng. J. 2016, 297, 66. doi: 10.1016/j.cej.2016.03.137
-
[43]
Song, H.; Cai, K. Energy 2017, 125, 519. doi: 10.1016/j.energy.2017.01.037
-
[44]
Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Nature Mater. 2013, 12, 719-23. doi: 10.1038/nmat3635
-
[45]
Park, S. C.; Yoon, S. I.; Lee, C. I.; Kim, Y. J.; Song, S. Analyst 2009, 134, 236. doi: 10.1039/B807882C
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[3]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[7]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[10]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[11]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[12]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[13]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[14]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[15]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[16]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[17]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[18]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[1]
Metrics
- PDF Downloads(27)
- Abstract views(2352)
- HTML views(328)