Citation: Luo Wenhao, Zhu Shuihong, Lin Youhui, Liu Xiang Yang. Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly[J]. Acta Chimica Sinica, ;2017, 75(10): 1010-1016. doi: 10.6023/A17050236 shu

Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly

  • Corresponding author: Lin Youhui, linyouhui@xmu.edu.cn Liu Xiang Yang, phyliuxy@nus.edu.sg
  • Received Date: 31 May 2017
    Available Online: 3 October 2017

    Fund Project: the 111 Project B16029the Natural Science Foundation of Guangdong Province 2014A030310005the Fundamental Research Funds for the Central Universities of China 20720170011the National Natural Science Foundation of China U1405226the National Natural Science Foundation of China 21401154Project supported by the National Natural Science Foundation of China (Nos. 21401154, U1405226), the 111 Project (No. B16029), the Natural Science Foundation of Guangdong Province (2014A030310005) and the Fundamental Research Funds for the Central Universities of China (No. 20720170011)

Figures(8)

  • Recently, there has been a significant interest in utilizing well-ordered, porous inverse-opal films for applications in optical, electronic and (bio)chemical fields. However, uncontrolled defects are always formed during their preparation process, which limit their practical applications. In this work, we examine the feasibility of using template/matrix co-assembly strategies to fabricate crack-free inverse opal thin films. Polystyrene spheres (PS) are chosen as a colloidal template, and two matrix precursors[tetraethoxysilane (TEOS) precursor and regenerated silk fibroin solution] are used for the current study. Our scanning electron microscope (SEM) and optical spectrum results show that, for the TEOS-based system, the resulting silica gel due to the sol-gel transition of TEOS can effectively fill the gap between particles, but cannot affect the self-assembly of PS colloidal particles. After selective removal of the PS template, centimeter-scale crack-free and well-ordered inverse opal films can be obtained. In addition, for a constant concentration of TEOS, the film thickness and order degree of structure can be simply tuned by adjusting the concentrations of colloidal spheres. In comparison with indirect approach through template self-assembly and liquid infiltration, such a co-assembly approach can effectively minimize the associated cracking and avoid the need for matrix infiltration into the preassembled colloidal spheres. On the other hand, macro-molecule silk fibroin has a relatively strong interaction with PS colloidal particles, which is demonstrated by SEM and confocal images. Due to their interaction, silk fibroin molecules are preferably adsorbed on the surface of PS spheres, which can restrain the self-assembly of colloidal particles. As a result, it cannot form well-ordered silk film based on such co-assembly strategy. That is to say, the co-assembly approach is not suitable for systems that matrices have strong interactions with templates. These findings pave the way to use the template/matrix co-assembly strategy for rationally designing and developing crack-free inverse opal films and to apply such well-ordered and porous materials in a variety of fields.
  • 加载中
    1. [1]

      Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.  doi: 10.1126/science.1070821

    2. [2]

      Zhao, X.; Su, F.; Yan, Q.; Guo, W.; Bao, X. Y.; Lv, L.; Zhou, Z. J. Mater. Chem. 2006, 16, 637.  doi: 10.1039/B513060C

    3. [3]

      Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.  doi: 10.1126/science.281.5376.538

    4. [4]

      Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I. Nat. Mater. 2006, 5, 179.  doi: 10.1038/nmat1588

    5. [5]

      Rinne, S. A.; García-Santamaría, F.; Braun, P. V. Nat. Photonics 2008, 2, 52.  doi: 10.1038/nphoton.2007.252

    6. [6]

      Choi, S. W.; Xie, J.; Xia, Y. Adv. Mater. 2009, 21, 2997.  doi: 10.1002/adma.v21:29

    7. [7]

      Lee, K.; Asher, S. A. J. Am. Chem. Soc. 2000, 122, 9534.  doi: 10.1021/ja002017n

    8. [8]

      Li, Y.; Qi, L.-M. Acta Chim. Sinica 2015, 73, 869.
       

    9. [9]

      Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K. H.; Aizenberg, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10354.  doi: 10.1073/pnas.1000954107

    10. [10]

      Lytle, J. C.; Stein, A. Annual Review of Nano Research, Vol. 1, Eds.:Cao, G. Z.; Brinker, C. J., World Scientific Publishing Co., Singa-pore, 2006, 1, pp. 1~14.

    11. [11]

      Velev, O. D.; Lenhoff, A. M. Curr. Opin. Colloid. Interface Sci. 2000, 5, 56.  doi: 10.1016/S1359-0294(00)00039-X

    12. [12]

      Jiang, F.-G.; Yao, J.-R.; Chen, X.; Shao, Z.-Z. Acta Chim. Sinica 2009, 67, 1675.  doi: 10.3321/j.issn:0567-7351.2009.14.023
       

    13. [13]

      Tu, H.; Yu, R.; Lin, Z.; Zhang, L.; Lin, N.; Yu, W. D.; Liu, X. Y. Adv. Funct. Mater. 2016, 26, 9032.  doi: 10.1002/adfm.v26.48

    14. [14]

      Ke, G.-Z.; Xie, H.-F.; Ruan, R.-P.; Yu, W.-D. Energy Convers. Manage. 2010, 51, 2294.  doi: 10.1016/j.enconman.2010.04.001

    15. [15]

      Liu, R.; Wan, L.; Liu, S.; Pan, L.; Wu, D.; Zhao, D. Adv. Funct. Mater. 2015, 25, 526.  doi: 10.1002/adfm.v25.4

    16. [16]

      Chen, Z.; Zhang, H.; Lin, Z.; Lin, Y.; van Esch, J. H.; Liu, X. Y. Adv. Funct. Mater. 2016, 26, 8978.  doi: 10.1002/adfm.v26.48

    17. [17]

      Nagarkar, S.; Nicolai, T.; Chassenieux, C.; Lele, A. Phys. Chem. Chem. Phys. 2010, 12, 3834.  doi: 10.1039/b916319k

    18. [18]

      Cao, H.; Chen, X.; Shao, Z.-Z. Acta Chim. Sinica 2008, 66, 2059.  doi: 10.3321/j.issn:0567-7351.2008.18.007
       

    19. [19]

      Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Chem. Mater. 2002, 14, 3305.  doi: 10.1021/cm020100z

    20. [20]

      Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Adv. Funct. Mater. 2013, 23, 5373.  doi: 10.1002/adfm.v23.43

    21. [21]

      Wong, S.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2003, 125, 15589.  doi: 10.1021/ja0379969

    22. [22]

      Zhou, Z.; Zhao, X. Langmuir 2005, 21, 4717.  doi: 10.1021/la046775t

    23. [23]

      Zhang, T. H.; Kuipers, B. W.; Groenewold, J.; Kegel, W. K. Soft Matter. 2015, 11, 297.  doi: 10.1039/C4SM02273D

    24. [24]

      Zhang, T. H.; Liu, X. Y. Chem. Soc. Rev. 2014, 43, 2324.  doi: 10.1039/C3CS60398A

    25. [25]

      Chabanov, A. A.; Jun, Y.; Norris, D. J. Appl. Phys. Lett. 2004, 84, 3573.  doi: 10.1063/1.1737066

    26. [26]

      Huang, Y.; Zhou, J.; Su, B.; Shi, L.; Jiang, L. J. Am. Chem. Soc. 2012, 134, 17053.  doi: 10.1021/ja304751k

    27. [27]

      Busch, K.; John, S. Phys. Rev. E 1998, 58, 3896.

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(13)
  • Abstract views(2351)
  • HTML views(527)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return