Citation: Luo Wenhao, Zhu Shuihong, Lin Youhui, Liu Xiang Yang. Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly[J]. Acta Chimica Sinica, ;2017, 75(10): 1010-1016. doi: 10.6023/A17050236 shu

Preparation of Crack-free Inverse-opal Films by Template/Matrix Co-assembly

  • Corresponding author: Lin Youhui, linyouhui@xmu.edu.cn Liu Xiang Yang, phyliuxy@nus.edu.sg
  • Received Date: 31 May 2017
    Available Online: 3 October 2017

    Fund Project: the 111 Project B16029the Natural Science Foundation of Guangdong Province 2014A030310005the Fundamental Research Funds for the Central Universities of China 20720170011the National Natural Science Foundation of China U1405226the National Natural Science Foundation of China 21401154Project supported by the National Natural Science Foundation of China (Nos. 21401154, U1405226), the 111 Project (No. B16029), the Natural Science Foundation of Guangdong Province (2014A030310005) and the Fundamental Research Funds for the Central Universities of China (No. 20720170011)

Figures(8)

  • Recently, there has been a significant interest in utilizing well-ordered, porous inverse-opal films for applications in optical, electronic and (bio)chemical fields. However, uncontrolled defects are always formed during their preparation process, which limit their practical applications. In this work, we examine the feasibility of using template/matrix co-assembly strategies to fabricate crack-free inverse opal thin films. Polystyrene spheres (PS) are chosen as a colloidal template, and two matrix precursors[tetraethoxysilane (TEOS) precursor and regenerated silk fibroin solution] are used for the current study. Our scanning electron microscope (SEM) and optical spectrum results show that, for the TEOS-based system, the resulting silica gel due to the sol-gel transition of TEOS can effectively fill the gap between particles, but cannot affect the self-assembly of PS colloidal particles. After selective removal of the PS template, centimeter-scale crack-free and well-ordered inverse opal films can be obtained. In addition, for a constant concentration of TEOS, the film thickness and order degree of structure can be simply tuned by adjusting the concentrations of colloidal spheres. In comparison with indirect approach through template self-assembly and liquid infiltration, such a co-assembly approach can effectively minimize the associated cracking and avoid the need for matrix infiltration into the preassembled colloidal spheres. On the other hand, macro-molecule silk fibroin has a relatively strong interaction with PS colloidal particles, which is demonstrated by SEM and confocal images. Due to their interaction, silk fibroin molecules are preferably adsorbed on the surface of PS spheres, which can restrain the self-assembly of colloidal particles. As a result, it cannot form well-ordered silk film based on such co-assembly strategy. That is to say, the co-assembly approach is not suitable for systems that matrices have strong interactions with templates. These findings pave the way to use the template/matrix co-assembly strategy for rationally designing and developing crack-free inverse opal films and to apply such well-ordered and porous materials in a variety of fields.
  • 加载中
    1. [1]

      Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.  doi: 10.1126/science.1070821

    2. [2]

      Zhao, X.; Su, F.; Yan, Q.; Guo, W.; Bao, X. Y.; Lv, L.; Zhou, Z. J. Mater. Chem. 2006, 16, 637.  doi: 10.1039/B513060C

    3. [3]

      Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.  doi: 10.1126/science.281.5376.538

    4. [4]

      Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I. Nat. Mater. 2006, 5, 179.  doi: 10.1038/nmat1588

    5. [5]

      Rinne, S. A.; García-Santamaría, F.; Braun, P. V. Nat. Photonics 2008, 2, 52.  doi: 10.1038/nphoton.2007.252

    6. [6]

      Choi, S. W.; Xie, J.; Xia, Y. Adv. Mater. 2009, 21, 2997.  doi: 10.1002/adma.v21:29

    7. [7]

      Lee, K.; Asher, S. A. J. Am. Chem. Soc. 2000, 122, 9534.  doi: 10.1021/ja002017n

    8. [8]

      Li, Y.; Qi, L.-M. Acta Chim. Sinica 2015, 73, 869.
       

    9. [9]

      Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K. H.; Aizenberg, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 10354.  doi: 10.1073/pnas.1000954107

    10. [10]

      Lytle, J. C.; Stein, A. Annual Review of Nano Research, Vol. 1, Eds.:Cao, G. Z.; Brinker, C. J., World Scientific Publishing Co., Singa-pore, 2006, 1, pp. 1~14.

    11. [11]

      Velev, O. D.; Lenhoff, A. M. Curr. Opin. Colloid. Interface Sci. 2000, 5, 56.  doi: 10.1016/S1359-0294(00)00039-X

    12. [12]

      Jiang, F.-G.; Yao, J.-R.; Chen, X.; Shao, Z.-Z. Acta Chim. Sinica 2009, 67, 1675.  doi: 10.3321/j.issn:0567-7351.2009.14.023
       

    13. [13]

      Tu, H.; Yu, R.; Lin, Z.; Zhang, L.; Lin, N.; Yu, W. D.; Liu, X. Y. Adv. Funct. Mater. 2016, 26, 9032.  doi: 10.1002/adfm.v26.48

    14. [14]

      Ke, G.-Z.; Xie, H.-F.; Ruan, R.-P.; Yu, W.-D. Energy Convers. Manage. 2010, 51, 2294.  doi: 10.1016/j.enconman.2010.04.001

    15. [15]

      Liu, R.; Wan, L.; Liu, S.; Pan, L.; Wu, D.; Zhao, D. Adv. Funct. Mater. 2015, 25, 526.  doi: 10.1002/adfm.v25.4

    16. [16]

      Chen, Z.; Zhang, H.; Lin, Z.; Lin, Y.; van Esch, J. H.; Liu, X. Y. Adv. Funct. Mater. 2016, 26, 8978.  doi: 10.1002/adfm.v26.48

    17. [17]

      Nagarkar, S.; Nicolai, T.; Chassenieux, C.; Lele, A. Phys. Chem. Chem. Phys. 2010, 12, 3834.  doi: 10.1039/b916319k

    18. [18]

      Cao, H.; Chen, X.; Shao, Z.-Z. Acta Chim. Sinica 2008, 66, 2059.  doi: 10.3321/j.issn:0567-7351.2008.18.007
       

    19. [19]

      Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Chem. Mater. 2002, 14, 3305.  doi: 10.1021/cm020100z

    20. [20]

      Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Adv. Funct. Mater. 2013, 23, 5373.  doi: 10.1002/adfm.v23.43

    21. [21]

      Wong, S.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2003, 125, 15589.  doi: 10.1021/ja0379969

    22. [22]

      Zhou, Z.; Zhao, X. Langmuir 2005, 21, 4717.  doi: 10.1021/la046775t

    23. [23]

      Zhang, T. H.; Kuipers, B. W.; Groenewold, J.; Kegel, W. K. Soft Matter. 2015, 11, 297.  doi: 10.1039/C4SM02273D

    24. [24]

      Zhang, T. H.; Liu, X. Y. Chem. Soc. Rev. 2014, 43, 2324.  doi: 10.1039/C3CS60398A

    25. [25]

      Chabanov, A. A.; Jun, Y.; Norris, D. J. Appl. Phys. Lett. 2004, 84, 3573.  doi: 10.1063/1.1737066

    26. [26]

      Huang, Y.; Zhou, J.; Su, B.; Shi, L.; Jiang, L. J. Am. Chem. Soc. 2012, 134, 17053.  doi: 10.1021/ja304751k

    27. [27]

      Busch, K.; John, S. Phys. Rev. E 1998, 58, 3896.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    3. [3]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    4. [4]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    5. [5]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    19. [19]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    20. [20]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

Metrics
  • PDF Downloads(14)
  • Abstract views(2395)
  • HTML views(536)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return