Citation: Wu Jiajia, Ji Zhenyuan, Shen Xiaoping, Miao Xuli, Xu Keqiang. Synthesis of γ-Fe2O3 Nanocubes Decorated Graphene/CdS Nanocomposites with Enhanced Photocatalytic Performance[J]. Acta Chimica Sinica, ;2017, 75(12): 1207-1214. doi: 10.6023/A17050220 shu

Synthesis of γ-Fe2O3 Nanocubes Decorated Graphene/CdS Nanocomposites with Enhanced Photocatalytic Performance

  • Corresponding author: Shen Xiaoping, xiaopingshen@163.com
  • Received Date: 21 May 2017
    Available Online: 10 December 2017

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20150507the National Natural Science Foundation of China 51602129the National Natural Science Foundation of China 51272094the Natural Science Foundation of Jiangsu Province BK20171295Project supported by the National Natural Science Foundation of China (Nos. 51272094, 51602129) and the Natural Science Foundation of Jiangsu Province (Nos. BK20171295, BK20150507)

Figures(10)

  • With Prussian blue (PB) as the precursor for γ-Fe2O3, the tri-component CdS/RGO/γ-Fe2O3 photocatalyst was prepared through loading PB nanocubes and CdS nanoparticles on graphene oxide (GO) nanosheets, followed by a calcination process in inert atmosphere (N2). The content of γ-Fe2O3 in the CdS/RGO/γ-Fe2O3 photocatalyst can be adjusted by changing the loading amount of PB, and the cubic morphology of PB was maintained after the calcination. The composition, structure, morphology and light absorption of the as-prepared products were investigated by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FT-IR), Raman spectroscopy and ultraviolet-visible (UV-vis) spectroscopy. The photocatalytic activity of the ternary photocatalysts was evaluated by the degradation of the organic pollutant of Rhodamine B (RhB) under visible-light irradiation. It was found that the degradation process of RhB follows pseudo-first-order kinetics. Compared to the bi-component CdS/RGO photocatalyst, the tri-component CdS/RGO/γ-Fe2O3 exhibited greatly enhanced photocatalytic activity, demonstrating that the γ-Fe2O3 played an important role in the photocatalytic process. The CdS/RGO/γ-Fe2O3 composite with PB loading amount of 12 mg exhibits the highest photocatalytic degradation efficiency of about 99.8% and the highest apparent reaction rate constant (k) value of about 0.03289 min-1, which is almost 2.9 times and 1.8 times higher than that of CdS and CdS/RGO, respectively. This result indicates that a suitable loading amount of γ-Fe2O3 is important to optimize the photocatalytic performance of the CdS/RGO/γ-Fe2O3 composites. Moreover, owing to the ferromagnetism of γ-Fe2O3, the CdS/RGO/γ-Fe2O3 photocatalyst could be easily separated from the reaction solution for recycling by a magnet. A possible photocatalytic mechanism was also proposed based on the photoluminescence (PL) characterization and the active species capture experiment. It was demonstrated that the enhanced photocatalytic degradation properties of CdS/RGO/γ-Fe2O3 composites can be ascribed to the excellent conductivity of RGO and the construction of Z-scheme heterostructure between CdS and γ-Fe2O3, which facilitate the transport and separation of photogenerated carriers.
  • 加载中
    1. [1]

      Aarthi, T.; Narahari, P.; Madras, G. J. Hazard. Mater. 2007, 149, 725.  doi: 10.1016/j.jhazmat.2007.04.038

    2. [2]

      Gu, S. H.; Wang, L. Z.; Zhang, J. L. Chin. J. Chem. 2017, 35, 153.  doi: 10.1002/cjoc.v35.2

    3. [3]

      Higashimoto, S.; Hikita, K.; Azuma, M. Chin. J. Chem. 2017, 35, 165.  doi: 10.1002/cjoc.v35.2

    4. [4]

      Wang, J. T.; Xiao, C.; Wu, X. Y. Chin. J. Chem. 2017, 35, 189.  doi: 10.1002/cjoc.v35.2

    5. [5]

      Li, X. D.; Zhang, Q. H.; Wang, H. Z. Chin. J. Chem. 2017, 35, 196.  doi: 10.1002/cjoc.v35.2

    6. [6]

      Qin, H. X.; Bian, Y. Y.; Zhang, Y. X. Chin. J. Chem. 2017, 35, 203.  doi: 10.1002/cjoc.v35.2

    7. [7]

      Cui, S. Z.; Yang, H. P.; Sun, H. H. Acta Chim. Sinica 2016, 74, 995.

    8. [8]

      Carey, J. H.; Lawrence, J.; Tosine, H. M. B. Environ. Contam. Tox. 1976, 16, 697.  doi: 10.1007/BF01685575

    9. [9]

      Wang, E. J.; Yang, H. Y.; Cao, Y. A. Acta Chim. Sinica 2009, 67, 2759(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.24.001
       

    10. [10]

      Bae, E.; Choi, W. Environ. Sci. Technol 2003, 37, 147.  doi: 10.1021/es025617q

    11. [11]

      Wang, Y. W.; Zhu, Y. H.; Yang, X. L. Chin. J. Chem. 2017, 35, 949.  doi: 10.1002/cjoc.v35.6

    12. [12]

      Chang, J.; Zhang, W. J.; Hong, C. Y. Chin. J. Chem. 2017, 35, 1016.  doi: 10.1002/cjoc.v35.6

    13. [13]

      Jiang, L. P.; Wang, S. J.; Shi, L. Y. Chin. J. Chem. 2017, 35, 183.  doi: 10.1002/cjoc.v35.2

    14. [14]

      Cheng, J. S.; Wang, W. H.; Zhu, W. J. Chin. J. Chem. 2016, 34, 53.  doi: 10.1002/cjoc.201500339

    15. [15]

      Wang, D. B.; Zhao, L. X.; Guo, L. H.; Zhang, H.; Wan, B.; Yang, Y. Acta Chim. Sinica 2015, 73, 388(in Chinese).
       

    16. [16]

      Bi, F.; Muhammad, F.; Liu, W. Chin. J. Chem. 2015, 33, 112.  doi: 10.1002/cjoc.v33.1

    17. [17]

      Abe, R.; Takata, T.; Sugihara, H. Chem. Commun. 2005, 30, 3829.

    18. [18]

      Higashi, M.; Abe, R.; Teramura, K. Chem. Phys. Lett. 2008, 452, 120.  doi: 10.1016/j.cplett.2007.12.021

    19. [19]

      Li, C. Q.; Luo, L. T.; Xiong, G. W. Acta Chim. Sinica 2010, 68, 1023(in Chinese).
       

    20. [20]

      Ba-Abbad, M. M.; Kadhum, A. A. H.; Mohamad, A. B. Int. J. Therm. Environ. Eng. 2010, 1, 37.  doi: 10.5383/ijtee.

    21. [21]

      Xie, Y. P.; Yu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. Energy. Environ. Sci. 2014, 7, 1895.  doi: 10.1039/c3ee43750g

    22. [22]

      Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. J. Phys. Chem. C, 2012, 116, 18023.  doi: 10.1021/jp303503c

    23. [23]

      Ye, X. J.; Dai, X.; Meng, S. G. Chin. J. Chem. 2017, 35, 217.  doi: 10.1002/cjoc.v35.2

    24. [24]

      Kashiath, L.; Namratha, K.; Byrappa, K. J. Alloy. Compd. 2016, 695, 799.

    25. [25]

      Lee, J.; Kim, Y.; Kim, J. K.; Kim, S.; Min, D.; Jang, D. Appl. Catal. B 2017, 205, 433.  doi: 10.1016/j.apcatb.2016.12.063

    26. [26]

      Khan, S.; Han, J. S.; Lee, S. Y. Chin. J. Chem. 2017, 35, 159.  doi: 10.1002/cjoc.v35.2

    27. [27]

      Cong, R. M.; Luo, Y. J.; Yu, H. Q. Acta Chim. Sinica 2012, 68, 1971(in Chinese).  doi: 10.3866/PKU.WHXB201206111
       

    28. [28]

      Li, H. J.; Zhou, Y.; Chen, L.; Luo, W. J.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Nanoscale 2013, 5, 11933.  doi: 10.1039/c3nr03493c

    29. [29]

      Vaquero, F.; Navarro, R. M.; Fierro, J. L. G. Appl. Catal. B 2017, 753.

    30. [30]

      Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. J. Am. Chem. Soc. 2011, 133, 10878.  doi: 10.1021/ja2025454

    31. [31]

      Li, Y. G.; Wei, X. L.; Li, H. J.; Wang, R. R.; Feng, J.; Yun, H.; Zhou, A. N. RSC Adv. 2015, 5, 14704.  doi: 10.1039/C4RA13400A

    32. [32]

      Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Chem. Commun. 2011, 47, 11984.  doi: 10.1039/c1cc14875c

    33. [33]

      Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  doi: 10.1021/nn1024219

    34. [34]

      Zhang, N.; Yang, M. Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. J. Chem. Rev. 2015, 115, 10307.  doi: 10.1021/acs.chemrev.5b00267

    35. [35]

      Quan, Q.; Lin, X.; Zhang, N.; Xu, Y. J. Nanoscale 2017, 9, 2398.  doi: 10.1039/C6NR09439B

    36. [36]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351.  doi: 10.1016/j.nantod.2016.05.008

    37. [37]

      Yuan, L.; Yang, M. Q.; Xu, Y. J. Nanoscale 2014, 6, 6335.  doi: 10.1039/c4nr00116h

    38. [38]

      Liu, Y.; Zhou, L.; Hu, Y.; Guo, C. F.; Qian, H. S.; Zhang, F. M.; Lou, X. W. J. Mater. Chem. 2011, 21, 18359.  doi: 10.1039/c1jm13789a

    39. [39]

      Li, N.; Zhang, J.; Tian, Y.; Zhao, J. H.; Zuo, W. Chem. Eng. J. 2017, 308, 377.  doi: 10.1016/j.cej.2016.09.093

    40. [40]

      Chen, Y.; Liu, K. R. J. Alloy. Compd. 2017, 697, 161.  doi: 10.1016/j.jallcom.2016.12.153

    41. [41]

      Jia, X. H.; Dai, R. R.; Lian, D. D.; Han, S.; Wu, X. Y.; Song, H. J. Appl. Surf. Sci. 2017, 392, 268.  doi: 10.1016/j.apsusc.2016.09.014

    42. [42]

      Wang, L.; Wei, H. W.; Fan, Y. J.; Gu, X.; Zhan, J. H. J. Phys. Chem. C 2009, 113, 14119.  doi: 10.1021/jp902866b

    43. [43]

      Liu, Y.; Yu, L.; Hu, Y.; Guo, C. F.; Zhang, F. M.; Lou, X. W. Nanoscale 2012, 4, 183.  doi: 10.1039/C1NR11114K

    44. [44]

      Zhang, L.; Wu, H. B.; Madhavi, S., ; Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 17388.  doi: 10.1021/ja307475c

    45. [45]

      He, H.; Klinowski, J.; Forster, M. Chem. Phys. Lett. 1998, 287, 53.  doi: 10.1016/S0009-2614(98)00144-4

    46. [46]

      Singh, A. P.; Mishra, M.; Sambyal, P.; Gupta, B. K.; Singh, A.; Dhawan, S. K. J. Mater. Chem. A 2014, 2, 3581.  doi: 10.1039/C3TA14212D

    47. [47]

      Meng, N. N.; Zhou, Y. F.; Nie, W. Y.; Chen, P. P. J. Nanopart. Res. 2016, 18, 241.  doi: 10.1007/s11051-016-3522-y

    48. [48]

      Kudin, K. N.; Ozbas, B.; Schniepp, H. C. Nano Lett. 2008, 8, 36.  doi: 10.1021/nl071822y

    49. [49]

      Sirivisoot, S.; Harrison, B. S. Int. J. Nanomedicine 2015, 10, 4447.

    50. [50]

      Xu, J.; Wang, L.; Cao, X. J. Chem. Eng. J. 2016, 283, 816.  doi: 10.1016/j.cej.2015.08.018

    51. [51]

      Jia, L.; Wang, D. H.; Huang, Y. X.; Xu, A. W.; Yu, H. Q. J. Phys. Chem. C 2011, 115, 11466.

    52. [52]

      Guo, R. Q.; Fang, L.; Dong, W.; Zheng, F. G.; Shen, M. R. J. Mater. Chem. 2011, 21, 18645.  doi: 10.1039/c1jm13072b

    53. [53]

      Mondal, S.; Sunhu, S.; Bhattacharya, S.; Saha, S. K. J. Phys. Chem. C 2015, 119, 27749.  doi: 10.1021/acs.jpcc.5b08116

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(7)
  • Abstract views(1671)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return