Citation: Zhang Panpan, Lu Long, Shen Qilong. Recent Progress on Direct Trifluoromethylthiolating Reagents and Methods[J]. Acta Chimica Sinica, ;2017, 75(8): 744-769. doi: 10.6023/A17050202 shu

Recent Progress on Direct Trifluoromethylthiolating Reagents and Methods

  • Corresponding author: Shen Qilong, shenql@mail.sioc.ac.cn
  • Received Date: 9 May 2017
    Available Online: 20 August 2017

    Fund Project: the National Natural Science Foundation of China 21572259the National Natural Science Foundation of China 21625206the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000Project supported by the National Natural Science Foundation of China (Nos.21625206, 21632009, 21372247, 21572258, 21572259, 21421002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB20000000)the National Natural Science Foundation of China 21421002the National Natural Science Foundation of China 21632009the National Natural Science Foundation of China 21572258the National Natural Science Foundation of China 21372247

Figures(103)

  • With a significantly high Hansch's hydrophobicity parameter (π=1.44), electron-withdrawing trifluoromethylthio group (CF3S-) has been considered as one of the most lipophilic substituents and privileged fragments that are able to improve drug molecules' pharmacokinetic and physicochemical properties such as lipophilicity and metabolic stability. It is well-known that incorporation of the trifluoromethylthio group into small molecules greatly enhances its ability to cross lipid membranes and in vivo absorpotion rate. In addition, the high electronegativity of the trifluoromethylthio group significantly improves the small molecule's stablity in acidic environments. Not surprisingly, the trifluoromethylthio group has been of special attention not only from the academia but also from pharmaceutical and agrochemical industry for their use in isostere-based drug design. Development of highly efficient methods for the introduction of the trifluoromethylthio group into small molecules, thereafter, has become a subject of recent focus in the field of organic chemistry. In the early 1960s, a few methods for the formation of trifluoromethylthioethers were reported, which typically involved halogen exchange of the trichloromethyl-substituted compounds and trifluoromethylation of thiolated substrates. However, the conditions of these methods were harsh and incompatible with many common functional groups. Since 2008, new reagents and methods that were able to efficiently incorporate the trifluoromethylthio group under mild conditions have emerged, that pave the way for the facile introduction of trifluoromethylthio group into site-specific positions of the target molecules. In this review, we will first briefly introduce the indirect strategies for trifluoromethylthiolation including halogen exchange and trifluoromethylation of thiolated substrates, and then focus on the direct trifluoromethylthiolation strategies including the transition metal-catalyzed trifluoromethylthiolation reactions, electrophilic trifluoromethylthiolation reactions with electrophilic trifluoromethylthiolating reagents and radical trifluoromethylthiolations. These methods represent the most straightforward and promising approaches for the incorporation of the trifluoromethylthio group into small molecules. At the end, we will discuss the remaining problems and challenges in this particular field.
  • 加载中
    1. [1]

    2. [2]

      (a) Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.

    3. [3]

    4. [4]

      (a) Fluorverbindungen, U. Angew. Chem. 1939, 52, 457. (b) Yagupolski, L. M.; Marenets, M. S. J. Gen. Chem. U.S.S.R. 1954, 24, 885.

    5. [5]

      (a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195. (b) Kolomeitsev, A. A.; Movchun, V. N.; Kondranenko, N. V.; Yagupolski, Y. L. Synthesis 1990, 1151. (c) Shono, T.; IShifune, M.; Okada, T.; Kashimura, S. J. Org. Chem. 1991, 56, 2. (d) Billard, T.; Large, S.; Langlois, B. R. Tetrahedron Lett. 1997, 38, 65. (e) Singh, R. P.; Cao, G.; Kirchmeier, R. L.; Shreeve, J. J. Org. Chem. 1999, 64, 2873. (f) Folleas, B.; Marek, I.; Normant, J. F.; Saint-Jalmes, L. Tetrahedron 2000, 56, 275. (g) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem. 2000, 65, 8848. (h) Billard, T.; Langlois, B. R.; Blond, G. Eur. J. Org. Chem. 2001, 1467. (i) Steensma, R. W.; Galabi, S.; Tagat, J. R.; McCombie, S. W. Tetrahedron Lett. 2001, 42, 2281. (j) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168, 173.

    6. [6]

      (a) Yagupolski, L. M.; Kondranenko, N. V.; Timofeeva, G. N. Zh. Org. Khim. 1984, 20, 115. (b) Umemoto, T.Chem. Rev. 1996, 96, 1757. (c) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. J. Org. Chem. 1998, 63, 2656. (d) Eisenberger, P.; Gischig, S.; Togni, A. Chem. Eur. J. 2006, 12, 2579. (e) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem. Int. Ed. 2007, 46, 754. (f) Koller, R.; Stanek, K.; Stolz, D.; Ardoom, R.; Niedermann, K.; Togni, A. Angew. Chem. Int. Ed. 2009, 48, 4332.

    7. [7]

      (a) Boiko, V. N.; Shchupak, G. M.; Yagupolski, L. M. Zh. Org. Khim. 1977, 13, 1057. (b) Popov, I.; Boiko, V. N.; Kondranenko, N. V.; Sambur, V. P.; Yagupolski, L. M. 1977, 13, 2135. (c) Boiko, V. N.; Dashevskaya, T. A.; Shchupak, G. M.; Yagupolski, L. M. Zh. Org. Khim. 1979, 15, 396.

    8. [8]

      Man, E. H.; Coffman, D. D.; Muetterties, E. L. J. Am. Chem. Soc. 1959, 81, 3575.  doi: 10.1021/ja01523a023

    9. [9]

      Emeleus, H. J.; MacDuffie, D. E. J. Am. Chem. Soc. (Resumed) 1961, 83, 2572.

    10. [10]

      Yagupolskii, L. M.; Kondratenko, N. V.; Sambur, V. P. Synthesis 1975, 1975, 721.  doi: 10.1055/s-1975-23905

    11. [11]

      Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluorine Chem. 2003, 119, 101.  doi: 10.1016/S0022-1139(02)00276-2

    12. [12]

      Remy, D. C.; Rittle, K. E.; Hunt, C. A.; Freedman, M. B. J. Org. Chem. 1976, 41, 1644.  doi: 10.1021/jo00871a037

    13. [13]

      Kondratenko, N. V.; Kolomeytsev, A. A.; Popov, V. I.; Yagupolskii, L. M. Synthesis 1985, 667.

    14. [14]

      Chen, Q.-Y.; Duan, J.-X. J. Chem. Soc., Chem. Commun. 1993, 918.

    15. [15]

      Clark, J. H.; Tavener, S. J. J. Fluorine Chem. 1997, 85, 169.  doi: 10.1016/S0022-1139(97)00057-2

    16. [16]

      Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 7312.  doi: 10.1002/anie.v50.32

    17. [17]

      Zhang, C.-P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183.  doi: 10.1021/ja210364r

    18. [18]

      Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc. 2015, 137, 4164.  doi: 10.1021/jacs.5b00538

    19. [19]

      Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem. Int. Ed. 2015, 54, 6809.  doi: 10.1002/anie.201501617

    20. [20]

      Dürr, A. B.; Yin, G.; Kalvet, I.; Napoly, F.; Schoenebeck, F. Chem. Sci. 2016, 7, 1076.  doi: 10.1039/C5SC03359D

    21. [21]

      Nguyen, T.; Chiu, W.-L.; Wang, X.-Y.; Sattler, M. O.; Love, J. A. Org. Lett. 2016, 18, 5492.  doi: 10.1021/acs.orglett.6b02689

    22. [22]

      Chen, C.; Xie, Y.; Chu, L.-L.; Wang, R.-W.; Zhang, X.; Qing, F. -L. Angew. Chem. Int. Ed. 2012, 51, 2492.  doi: 10.1002/anie.v51.10

    23. [23]

      Chen, C.; Chu, L.-L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 12454.  doi: 10.1021/ja305801m

    24. [24]

      Zhang, C.-P.; Vicic, D. A. Chem. Asian J. 2012, 7, 1756.  doi: 10.1002/asia.v7.8

    25. [25]

      Zhai, L.-J.; Li, Y.-M.; Yin, J.; Jin, K.; Zhang, R.; Fu, X.-M.; Duan, C.-Y. Tetrahedron 2013, 69, 10262.  doi: 10.1016/j.tet.2013.10.028

    26. [26]

      Zhao, M.-Z.; Zhao, X.-M.; Zheng, P.-R.; Tian, Y.-W. J. Fluorine Chem. 2017, 194, 73.  doi: 10.1016/j.jfluchem.2017.01.007

    27. [27]

      Wu, W.; Wang, B.-Y.; Ji, X.-F.; Cao, S. Org. Chem. Front. 2017, DOI:10.1039/c7qo00198c.  doi: 10.1039/c7qo00198c

    28. [28]

      Chen, C.; Xu, X.-H.; Yang, B.; Qing, F.-L. Org. Lett. 2014, 16, 3372.  doi: 10.1021/ol501400u

    29. [29]

      Yin, W.; Wang, Z.; Huang, Y. Adv. Synth. Catal. 2014, 356, 2998.  doi: 10.1002/adsc.201400362

    30. [30]

      Liu, X.-G.; Li, Q.-J.; Wang, H.-G. Adv. Synth. Catal. 2017, 359, 1942.  doi: 10.1002/adsc.v359.11

    31. [31]

      Munavalli, S.; Rossman, D. I.; Rohrbaugh, D. K.; Ferguson, C. P.; Hsu, F. L. Heteroat. Chem. 1992, 3, 189.  doi: 10.1002/(ISSN)1098-1071

    32. [32]

      Rheingold, A. L.; Munavalli, S.; Rossman, D. I.; Ferguson, C. P. In-org. Chem. 1994, 33, 1723.

    33. [33]

      Weng, Z.-Q.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem. Int. Ed. 2013, 52, 1548.  doi: 10.1002/anie.201208432

    34. [34]

      Wang, Z.; Tu, Q.; Weng, Z.-Q. J. Organomet. Chem. 2014, 751, 830.  doi: 10.1016/j.jorganchem.2013.08.008

    35. [35]

      Yang, Y.; Xu, L.; Yu, S.; Liu, X.; Zhang, Y.; Vicic, D. A. Chem. Eur. J. 2016, 22, 858.  doi: 10.1002/chem.201504790

    36. [36]

      Zhang, M.; Weng, Z.-Q. Adv. Synth. Catal. 2016, 358, 386.  doi: 10.1002/adsc.201500575

    37. [37]

      (a) Kong, D.; Jiang, Z.; Xin, S.; Bai, Z.; Yuan, Y.; Weng, Z.-Q. Tetrahedron 2013, 69, 6046. (b) Huang, Y.; He, X.; Li, H.; Weng, Z.-Q. Eur. J. Org. Chem. 2014, 2014, 7324. (c) Lin, Q.; Chen, L.; Huang, Y.; Rong, M.; Yuan, Y.; Weng, Z.-Q. Org. Biomol. Chem. 2014, 12, 5500.

    38. [38]

      (a) Zhu, P.; He, X.; Chen, X.; You, Y.; Yuan, Y.; Weng, Z.-Q. Tetrahedron 2014, 70, 672. (b) Huang, Y.; Ding, J.; Wu, C.; Zheng, H.; Weng, Z.-Q. J. Org. Chem. 2015, 80, 2912.

    39. [39]

      Zhang, M.; Chen, J.; Chen, Z.; Weng, Z.-Q. Tetrahedron 2016, 72, 3525.  doi: 10.1016/j.tet.2016.04.081

    40. [40]

      Kondratenko, N. V.; Sambur, V. P. Ukr. Khim. Zh. (Russ. Ed.) 1975, 41, 516.

    41. [41]

      Adams, D. J.; Goddard, A.; Clark, J. H.; Macquarrie, D. J. Chem. Commun. 2000, 46, 987.

    42. [42]

      Danoun, G.; Bayarmagnai, B.; Gruenberg, M. F.; Goossen, L. J. Chem. Sci. 2014, 5, 1312.  doi: 10.1039/c3sc53076k

    43. [43]

      (a) Hu, M.; Rong, J.; Miao, W.; Ni, C.; Han, Y.; Hu, J.-B. Org. Lett. 2014, 16, 2030. (b) Wang, X.; Zhou, Y.; Ji, G.; Wu, G.; Li, M.; Zhang, Y.; Wang, J.-B. Eur. J. Org. Chem. 2014, 3093.

    44. [44]

      Lefebvre, Q.; Fava, E.; Nikolaienko, P.; Rueping, M. Chem. Commun. 2014, 50, 6617.  doi: 10.1039/c4cc02060j

    45. [45]

      Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J. Chem. Eur. J. 2016, 22, 12270.  doi: 10.1002/chem.v22.35

    46. [46]

      Nikolaienko, P.; Pluta, R.; Rueping, M. Chem. Eur. J. 2014, 20, 9867.  doi: 10.1002/chem.201402679

    47. [47]

      Liu, J.-B.; Xu, X.-H.; Chen, Z.-H.; Qing, F.-L. Angew. Chem. Int. Ed. 2015, 54, 897.  doi: 10.1002/anie.201409983

    48. [48]

      Qiu, Y.-F.; Song, X.-R.; Li, M.; Zhu, X.-Y.; Wang, A.-Q.; Yang, F.; Han, Y.-P.; Zhang, H.-R.; Jin, D.-P.; Li, Y.-X.; Liang, Y.-M. Org. Lett. 2016, 18, 1514.  doi: 10.1021/acs.orglett.6b00065

    49. [49]

      Ye, K.-Y.; Zhang, X.; Dai, L.-X.; You, S.-L. J. Org. Chem. 2014, 79, 12106.  doi: 10.1021/jo5019393

    50. [50]

      Zeng, J.-L.; Chachignon, H.; Ma, J.-A.; Cahard, D. Org. Lett. 2017, 19, 1974.  doi: 10.1021/acs.orglett.7b00501

    51. [51]

      Nikolaienko, P.; Yildiz, T.; Rueping, M. Eur. J. Org. Chem. 2016, 1091.

    52. [52]

      Fang, W.-Y.; Dong, T.; Han, J.-B.; Zha, G.-F.; Zhang, C.-P. Org. Biomol. Chem. 2016, 14, 11502.  doi: 10.1039/C6OB02107G

    53. [53]

      Wang, K.-P.; Yun, S.-Y.; Mamidipalli, P.; Lee, D. Chem. Sci. 2013, 4, 3205.  doi: 10.1039/c3sc50992c

    54. [54]

      Karmakar, R.; Mamidipalli, P.; Salzman, R. M.; Hong, S.; Yun, S. -Y.; Guo, W.; Xia, Y.; Lee, D. Org. Lett. 2016, 18, 3530.  doi: 10.1021/acs.orglett.6b01443

    55. [55]

      Xiao, Q.; Sheng, J.; Ding, Q.; Wu, J. Eur. J. Org. Chem. 2014, 217.

    56. [56]

      Zeng, Y. W.; Hu, J.-B. Org. Lett. 2016, 18, 856.  doi: 10.1021/acs.orglett.6b00142

    57. [57]

      Li, S.-G.; Zard, S. Z. Org. Lett. 2013, 15, 5898.  doi: 10.1021/ol403038f

    58. [58]

      Yang, H.-B.; Fan, X.; Wei, Y.; Shi, M. Org. Chem. Front. 2015, 2, 1088.  doi: 10.1039/C5QO00198F

    59. [59]

      Fan, X.; Yang, H.; Shi, M. Adv. Synth.Catal. 2017, 359, 49.  doi: 10.1002/adsc.v359.1

    60. [60]

      (a) Andreades, S.; Harris, J. F.; Sheppard, W. A. J. Org. Chem. 1964, 29, 898. (b) Sheppard, W. A. J. Org. Chem. 1964, 29, 895; (c) Scribner, R. M. J. Org. Chem. 1966, 31, 3671. (d) Bayreuther, H.; Haas, A. Chem. Ber. 1973, 106, 1418. (e) Croft, T. S.; McBrady, J. J. J. Heterocycl. Chem. 1975, 12, 845. (f) Haas, A.; hellwig, V. Chem. Ber. 1976, 109, 2475. (g) Haas, A.; Niemann, U. Chem. Ber. 1977, 110, 67. (h) Popov, V. I.; Kondranenko, N. V.; Haas, A. UKr. Khim. Zh. 1983, 49, 861. (i) Haas, A.; Lieb, M.; Zhang, Y. J. Fluorine Chem. 1985, 29, 311; (j) Bogdanowicz-Szwed, K.; Kawalek, B.; Lieb, M. J. Fluorine Chem. 1987, 35, 317. (k) Rossman, D. I.; Muller, A. J.; Lewis, E. O. J. Fluorine Chem. 1991, 55, 221.

    61. [61]

      (a) Sharpe, T. R.; Cherkofsky, S. C.; Hewes, W. E.; Smith, D. H.; Gregory, W. A.; Haber, S. B.; Leadbetter, M. R.; Whitney, J. G. J. Med. Chem. 1985, 28, 1188. (b) South, M. S.; Van Sant, K. A. J. Heterocycl. Chem 1991, 28, 1017. (c) Boese, R.; Haas, A.; Lieb, M.; Roeske, U. Chem. Ber. 1994, 127, 449.

    62. [62]

      Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.  doi: 10.1021/ja3092278

    63. [63]

      CF3SCl was reported to have an L(ct)50 of between 440 and 880 ppm/min and CF3SSCF3 was reported to have an L(ct)50 of about 200 ppm/min. Chem. Eng. News 1967, 45(51), 44.

    64. [64]

      Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. J. Org. Chem. 2008, 73, 9362.  doi: 10.1021/jo8018544

    65. [65]

      Ferry, A.; Billard, T.; Langlois, B. R.; Bacque, E. Angew. Chem. Int. Ed. 2009, 48, 8551.  doi: 10.1002/anie.v48:45

    66. [66]

      Alazet, S.; Zimmer, L.; Billard, T. Angew. Chem. Int. Ed. 2013, 52, 10814.  doi: 10.1002/anie.201305179

    67. [67]

      Ferry, A.; Billard, T.; Bacqué, E.; Langlois, B. R. J. Fluorine Chem. 2012, 134, 160.  doi: 10.1016/j.jfluchem.2011.02.005

    68. [68]

      Alazet, S.; Ollivier, K.; Billard, T. Beilstein J. Org. Chem. 2013, 9, 2354.

    69. [69]

      (a) Alazet, S.; Zimmer, L.; Billard, T. Chem. Eur. J. 2014, 20, 8589. (b) Alazet, S.; Ismalaj, E.; Glenadel, Q.; Le Bars, D.; Billard, T. Eur. J. Org. Chem. 2015, 4607.

    70. [70]

      Alazet, S.; Zimmer, L.; Billard, T. J. Fluorine Chem. 2015, 171, 78.  doi: 10.1016/j.jfluchem.2014.09.009

    71. [71]

      Glenadel, Q.; Alazet, S.; Tlili, A.; Billard, T. Chem. Eur. J. 2015, 21, 14694.  doi: 10.1002/chem.201502338

    72. [72]

      Glenadel, Q.; Billard, T. Chin. J. Chem. 2016, 34, 455.

    73. [73]

      Glenadel, Q.; Bordy, M.; Alazet, S.; Tlili, A.; Billard, T. Asian J. Org. Chem. 2016, 5, 428.

    74. [74]

      Tlili, A.; Alazet, S.; Glenadel, Q.; Billard, T. Chem. Eur. J. 2016, 22, 10230.  doi: 10.1002/chem.201601338

    75. [75]

      Alazet, S.; Billard, T. Synlett 2015, 26, 76.  doi: 10.1055/s-00000083

    76. [76]

      Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Nkounkou Loumpangou, C.; Ouamba, J. M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem. Int. Ed. 2017, 56, 169.  doi: 10.1002/anie.v56.1

    77. [77]

      Yang, Y.; Jiang, X.; Qing, F.-L. J. Org. Chem. 2012, 77, 7538.  doi: 10.1021/jo3013385

    78. [78]

    79. [79]

      Xiao, Q.; Sheng, J.; Chen, Z.; Wu, J. Chem. Commun. 2013, 49, 8647.  doi: 10.1039/c3cc44263b

    80. [80]

      Sheng, J.; Fan, C.; Wu, J. Chem. Commun. 2014, 50, 5494.  doi: 10.1039/c4cc01904k

    81. [81]

      Sheng, J.; Li, S.; Wu, J. Chem. Commun. 2014, 50, 578.  doi: 10.1039/C3CC45958F

    82. [82]

      Liu, T.; Qiu, G.-Y.-S.; Ding, Q.-P.; Wu, J. Tetrahedron 2016, 72, 1472.  doi: 10.1016/j.tet.2016.01.053

    83. [83]

      Sheng, J.; Wu, J. Org. Biomol. Chem. 2014, 12, 7629.  doi: 10.1039/C4OB01451K

    84. [84]

      Liu, Y.-W.; Qiu, G.-Y.-S.; Wang, H.-L.; Sheng, J. Tetrahedron Lett. 2017, 58, 690.  doi: 10.1016/j.tetlet.2017.01.018

    85. [85]

      Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 3457.  doi: 10.1002/anie.v52.12

    86. [86]

      Vinogradova, E. V.; Muller, P.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 3125.  doi: 10.1002/anie.201310897

    87. [87]

      Shao, X.-X.; Liu, T.-F.; Lu, L.; Shen, Q.-L. Org. Lett. 2014, 16, 4738.  doi: 10.1021/ol502132j

    88. [88]

      Ma, B.-Q.; Shao, X.-X.; Shen, Q.-L. J. Fluorine Chem. 2015, 171, 73.  doi: 10.1016/j.jfluchem.2014.09.011

    89. [89]

      Shao, X.-X.; Liu, T.-F.; Lu, L.; Shen, Q.-L. Org. Lett. 2015, 80, 3012.

    90. [90]

      (a) Wang, X.-Q.; Yang, T.; Cheng, X.; Shen, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 12860. (b) Yang, T.; Shen, Q.-L.; Lu, L. Chin. J. Chem. 2014, 32, 678.

    91. [91]

      Deng, Q. H.; Rettenmeier, C.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2014, 20, 93.  doi: 10.1002/chem.201303641

    92. [92]

      He, H.; Zhu, X. Org. Lett. 2014, 16, 3102.  doi: 10.1021/ol501211z

    93. [93]

      Li, Y.; Ye, Z.; Bellman, T. M.; Chi, T.; Dai, M. Org. Lett. 2015, 17, 2186.  doi: 10.1021/acs.orglett.5b00782

    94. [94]

      Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.  doi: 10.1021/ja402455f

    95. [95]

      Arimori, S.; Takada, M.; Shibata, N. Dalton Trans. 2015, 44, 19456.  doi: 10.1039/C5DT02214B

    96. [96]

      Huang, Z.; Yang, Y.-D.; Tokunaga, E.; Shibata, N. Asian J. Org. Chem. 2015, 4, 525.

    97. [97]

      Huang, Z.; Yang, Y.-D.; Tokunaga, E.; Shibata, N. Org. Lett. 2015, 17, 1094.  doi: 10.1021/ol503616y

    98. [98]

      Arimori, S.; Takada, M.; Shibata, N. Org. Lett. 2015, 17, 1063.  doi: 10.1021/acs.orglett.5b00057

    99. [99]

      Huang, Z.; Okuyama, K.; Wang, C.; Tokunaga, E.; Li, X.; Shibata, N. ChemistryOpen 2016, 5, 188.  doi: 10.1002/open.201500225

    100. [100]

      Haas, A.; Möller, G. Chemische Berichte 1996, 129, 1383.  doi: 10.1002/(ISSN)1099-0682

    101. [101]

      Munavalli, S.; Rohrbaugh, D. K.; Rossman, D. I.; Berg, F. J.; Wagner, G. W.; Durst, H. D. Synth. Commun. 2000, 30, 2847.  doi: 10.1080/00397910008087435

    102. [102]

      Pluta, R.; Nikolaienko, P.; Rueping, M. Angew. Chem. Int. Ed. 2014, 53, 1650.  doi: 10.1002/anie.201307484

    103. [103]

      Kang, K.; Xu, C.-F.; Shen, Q.-L. Org. Chem. Front. 2014, 1, 294.  doi: 10.1039/c3qo00068k

    104. [104]

      Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I.; Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856.  doi: 10.1002/anie.201304957

    105. [105]

      Rueping, M.; Liu, X.; Bootwicha, T.; Pluta, R.; Merkens, C. Chem. Commun. 2014, 50, 2508.  doi: 10.1039/c3cc49877h

    106. [106]

      Pluta, R.; Rueping, M. Chem. Eur. J. 2014, 20, 17315.  doi: 10.1002/chem.201405654

    107. [107]

      Xiao, Q.; He, Q.; Li, J.; Wang, J. Org. Lett. 2015, 17, 6090.  doi: 10.1021/acs.orglett.5b03116

    108. [108]

      Honeker, R.; Ernst, J. B.; Glorius, F. Chem. Eur. J. 2015, 21, 8047.  doi: 10.1002/chem.201500957

    109. [109]

      Xu, C.-F.; Shen, Q.-L. Org. Lett. 2014, 16, 2046.  doi: 10.1021/ol5006533

    110. [110]

      Zhao, B.-L.; Du, D.-M. Org. Lett. 2017, 19, 1036.  doi: 10.1021/acs.orglett.6b03846

    111. [111]

      Xu, C.-F.; Ma, B.-Q.; Shen, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 9316.  doi: 10.1002/anie.201403983

    112. [112]

      Xu, C.-F.; Shen, Q.-L. Org. Lett. 2015, 17, 4561.  doi: 10.1021/acs.orglett.5b02315

    113. [113]

      Wang, Q.; Qi, Z.; Xie, F.; Li, X.-W. Adv. Synth. Catal. 2015, 357, 355.  doi: 10.1002/adsc.201400717

    114. [114]

      Wang, Q.; Xie, F.; Li, X.-W. J. Org. Chem. 2015, 80, 8361.  doi: 10.1021/acs.joc.5b00940

    115. [115]

      Maeno, M.; Shibata, N.; Cahard, D. Org. Lett. 2015, 17, 1990.  doi: 10.1021/acs.orglett.5b00750

    116. [116]

      Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X.-D. Org. Lett. 2015, 17, 3620.  doi: 10.1021/acs.orglett.5b01727

    117. [117]

      Wu, J.-J.; Xu, J.; Zhao, X.-D. Chem. Eur. J. 2016, 22, 15265.  doi: 10.1002/chem.v22.43

    118. [118]

      Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X.-D. Angew. Chem. Int. Ed. 2016, 55, 5846.  doi: 10.1002/anie.201601713

    119. [119]

      Yu, Y.; Xiong, D.-C.; Ye, X.-S. Org. Biomol. Chem. 2016, 14, 6403.  doi: 10.1039/C6OB01001F

    120. [120]

      Hu, L.-Q.; Wu, M.-H.; Wan, H.-X.; Wang, J.; Wang, G.-Q.; Guo, H.-B.; Sun, S.-F. New J. Chem. 2016, 40, 6550.

    121. [121]

      Ernst, J. B.; Rakers, L.; Glorius, F. Synthesis 2017, 49, 260.

    122. [122]

      Wei, F.; Zhou, T.; Ma, Y.; Tung, C.-H.; Xu, Z.-H. Org. Lett. 2017, 19, 2098.  doi: 10.1021/acs.orglett.7b00701

    123. [123]

      Zhang, P.-P.; Li, M.; Xue, X.-S.; Xu, C.-F.; Zhao, Q.-C.; Liu, Y.-F.; Wang, H.-Y.; Guo, Y.-L.; Lu, L.; Shen, Q.-L. J. Org. Chem. 2016, 81, 7486.  doi: 10.1021/acs.joc.6b01178

    124. [124]

      Li, M.; Guo, J.; Xue, X.-S.; Cheng, J.-P. Org. Lett. 2016, 18, 264.  doi: 10.1021/acs.orglett.5b03433

    125. [125]

      Zhang, H.; Leng, X.-B.; Wan, X.-L.; Shen, Q.-L. Org. Chem. Front. 2017, 4, 1051.  doi: 10.1039/C7QO00042A

    126. [126]

      Zhu, X.-L.; Xu, J.-H.; Cheng, D.-J.; Zhao, L.-J.; Liu, X.-Y.; Tan, B. Org. Lett. 2014, 16, 2192.  doi: 10.1021/ol5006888

    127. [127]

      Xiang, H.; Yang, C.-H. Org. Lett. 2014, 16, 5686.  doi: 10.1021/ol502751k

    128. [128]

      Zhu, S.-Q.; Xu, X.-H.; Qing, F.-L. Eur J. Org. Chem. 2014, 4453.

    129. [129]

      Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Angew. Chem. Int. Ed. 2015, 54, 14965.  doi: 10.1002/anie.201508495

    130. [130]

      Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.  doi: 10.1021/acs.orglett.6b01026

    131. [131]

      Lu, K.; Deng, Z.-J.; Li, M.; Li, T.-J.; Zhao, X. Org. Biomol. Chem. 2017, 15, 1254.  doi: 10.1039/C6OB02465C

    132. [132]

      Jiang, L.-Q.; Yi, W.-B.; Liu, Q.-R. Adv. Synth. Catal. 2016, 358, 3700.  doi: 10.1002/adsc.201600651

    133. [133]

      Bu, M. J.; Lu, G. P.; Cai, C. Org. Chem. Front. 2017, 4, 266.  doi: 10.1039/C6QO00622A

    134. [134]

      Saidalimu, I.; Suzuki, S.; Tokunaga, E.; Shibata, N. Chem. Sci. 2016, 7, 2106.  doi: 10.1039/C5SC04208A

    135. [135]

      Saidalimu, I.; Suzuki, S.; Yoshioka, T.; Tokunaga, E.; Shibata, N. Org. Lett. 2016, 18, 6404.  doi: 10.1021/acs.orglett.6b03301

    136. [136]

      Harris, J. F.; Stacey, F. W. J. Am. Chem. Soc. 1961, 83, 840.  doi: 10.1021/ja01465a026

    137. [137]

      (a) Harris, J. F. J. Am. Chem. Soc. 1962, 84, 3148. (b) Harris, J. F. J. Org. Chem. 1966, 31, 931.

    138. [138]

      Haran, G.; Sharp, D. W. A. J. Chem. Soc., Perkin Trans. 11972, 34.

    139. [139]

      Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.  doi: 10.1021/ol403739w

    140. [140]

      Zhang, K.; Liu, J.-B.; Qing, F.-L. Chem. Commun. 2014, 50, 14157.  doi: 10.1039/C4CC07062C

    141. [141]

      Li, C.; Zhang, K.; Xu, X.-H.; Qing, F.-L. Tetrahedron Lett. 2015, 56, 6273.  doi: 10.1016/j.tetlet.2015.09.117

    142. [142]

      Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.  doi: 10.1021/ja5115858

    143. [143]

      Qiu, Y.-F.; Zhu, X.-Y.; Li, Y.-X.; He, Y.-T.; Yang, F.; Wang, J.; Hua, H.-L.; Zheng, L.; Wang, L.-C.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 3694.  doi: 10.1021/acs.orglett.5b01657

    144. [144]

      Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.  doi: 10.1021/acs.orglett.6b01702

    145. [145]

      Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lu, W.-X.; Liu, X.-G.; Li, Q.; Wang, H.-G. Org. Chem. Front. 2015, 2, 1511.  doi: 10.1039/C5QO00271K

    146. [146]

      Pan, S.; Huang, Y.; Qing, F.-L. Chem. Asian J. 2016, 11, 2854.  doi: 10.1002/asia.201601098

    147. [147]

      Wu, W.; Dai, W.; Ji, X.; Cao, S. Org. Lett. 2016, 18, 2918.  doi: 10.1021/acs.orglett.6b01286

    148. [148]

      Chen, M.-T.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2017, 4, 86.  doi: 10.1039/C6QO00536E

    149. [149]

      Li, M.; Petersen, J. L.; Hoover, J. M. Org. Lett. 2017, 19, 638.  doi: 10.1021/acs.orglett.6b03806

    150. [150]

      Liu, K.; Jin, Q.; Chen, S.; Liu, P.-N. RSC Adv. 2017, 7, 1546.  doi: 10.1039/C6RA25378D

    151. [151]

      Honeker, R.; Garza-Sanchez, R. A.; Hopkinson, M. N.; Glorius, F. Chem. Eur. J. 2016, 22, 4395.  doi: 10.1002/chem.201600190

    152. [152]

      Li, Y.; Koike, T.; Akita, M. Asian J. Org. Chem. 2017, 6, 445.

    153. [153]

      Dagousset, G.; Simon, C.; Anselmi, E.; Tuccio, B.; Billard, T.; Magnier, E. Chem. Eur. J. 2017, 23, 4282.  doi: 10.1002/chem.201700734

    154. [154]

      Hu, F.; Shao, X.-X.; Zhu, D.-H.; Lu, L.; Shen, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 6105.  doi: 10.1002/anie.201402573

    155. [155]

      Yang, T.; Lu, L.; Shen, Q.-L. Chem. Commun. 2015, 51, 5479.  doi: 10.1039/C4CC08655D

    156. [156]

      Candish, L.; Pitzer, L.; Gomez-Suarez, A.; Glorius, F. Chem. Eur. J. 2016, 22, 4753.  doi: 10.1002/chem.201600421

    157. [157]

      He, B.; Xiao, Z.-W.; Wu, H.; Guo, Y.; Chen, Q.-Y.; Liu, C. RSC Adv. 2017, 7, 880.  doi: 10.1039/C6RA26133G

    158. [158]

      (a) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem. Int. Ed. 2015, 54, 4070. (b) Guo, S.; Zhang, X.; Tang, P.-P. Angew. Chem. Int. Ed. 2015, 54, 4065.

    159. [159]

      Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 16200.  doi: 10.1021/jacs.6b09970

    160. [160]

      Li, H.; Shan, C.; Tung, C.-H.; Xu, Z.-H. Chem. Sci. 2017, 8, 2610.  doi: 10.1039/C6SC05093J

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(110)
  • Abstract views(13002)
  • HTML views(1772)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return