Citation: Liu Xinxin, Yan Long, Fu Yao. Lignin C-C Bond's Cleavage by Vanadium Catalyzed with High Selectivity in Acid Environment[J]. Acta Chimica Sinica, ;2017, 75(8): 788-793. doi: 10.6023/A17050199 shu

Lignin C-C Bond's Cleavage by Vanadium Catalyzed with High Selectivity in Acid Environment

  • Corresponding author: Fu Yao, fuyao@ustc.edu.cn
  • † Xinxin Liu and Long Yan contributed equally to this paper
  • Received Date: 8 May 2017
    Available Online: 9 August 2017

    Fund Project: the National Natural Science Foundation of China 21572212the National Natural Science Foundation of China 21402181Project supported by the National Natural Science Foundation of China (Nos.21325208, 21272050, 21402181, 21572212), the Index Program Directive Foundation of Hefei Centre for Physical Science and Technology (No.2014FXCX006), the Science Foundation of the Chinese Academy of Sciences (Nos.KFJ-EW-STS-051, XDB20000000, YZ201563), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20123402130008), the Fundamental Research Funds for the Central Universities (Nos.WK2060190025, WK2060190040), the Key Technologies R & D Program of Anhui Province (No.1604a0702027) and the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of Chinathe Key Technologies R & D Program of Anhui Province 1604a0702027the National Natural Science Foundation of China 21272050the Science Foundation of the Chinese Academy of Sciences KFJ-EW-STS-051the Fundamental Research Funds for the Central Universities WK2060190040the National Natural Science Foundation of China 21325208the Science Foundation of the Chinese Academy of Sciences XDB20000000the Science Foundation of the Chinese Academy of Sciences YZ201563the Fundamental Research Funds for the Central Universities WK2060190025the Index Program Directive Foundation of Hefei Centre for Physical Science and Technology 2014FXCX006the Specialized Research Fund for the Doctoral Program of Higher Education 20123402130008

Figures(6)

  • Lignin is a potential resources of aromatic compound that can be obtained from renewable biomass. There are many ongoing research efforts to utilize lignin as a sustainable alternative to petroleum derived aromatic compounds. Because of the complex three-dimensional structure, the depolymerization of lignin into monomer molecule became a core challenge for the utilization of lignin. The β-O-4 structure is the most abundant linkage in lignin. Owing to its abundance, the β-O-4 structure has been representatively studied in many aspects of scientific research on lignin degradation. Among the different reported strategies for the cleavage of β-O-4 ether bonds, C-C bond cleavage is one of the most important approaches to depolymerizing lignin. In this study, we accomplished the oxidative C-C bond cleavage of the β-O-4 structure by the catalysis of NH4VO3 using the pre-oxidized 2-phenoxy-1-phenylethanone (1a) as a model compound of lignin. In the DMSO-HOAc solvent system, benzoic acid and phenol were produced in a moderate condition, the yeild of benzoic acid and phenol were 82.1% and 88.1%, respectively. The reaction process was investigated via 1H NMR and X-ray photoelectron spectra (XPS) characterizations and the possible reaction pathway was further proposed. As the results shown, two possible reaction routes existed in this catalytic system. Pathway one:the 2-hydroxyacetophenone and phenol formed after the C-O bond cleavage of 1a in the acidic system, then, the intermediate 2-hydroxyacetophenone was converted to benzoic via the cleavage of C-C bond. Pathway two:benzoic acid and phenol yielded by the C-C bond of 1a cleaved directly over the catalyst. In addition, the catalyst characterization results confirmed that the oxovanadium(V) directly catalyzed the depolymerization of the β-O-4 structure and generated oxovanadium(Ⅳ), then oxovanadium(Ⅳ) was oxidized by O2 and finish the catalytic cycle. All reactions were carried out by the following general procedure. This reaction was carried out in glass tube and heated by oil bath. 0.5 mmol of 1a was added into 2 mL of DMSO-HOAc (V:V=3:1) with 30 mol% NH4VO3 (17.5 mg) under an oxygen atmosphere (101 kPa, in balloon). The reactor was heated to 100℃ with a powerful stirring. After 8 h, the reaction was cooled to room temperature, then 5 mL of ethyl acetate was added into the mixtures. Ash black precipitate was removed by filtration and the liquid mixture was detected by GC.
  • 加载中
    1. [1]

      Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.  doi: 10.1021/cr050989d

    2. [2]

    3. [3]

    4. [4]

      (a) Xu, C. P.; Arancon, R. A. D.; Labidi, J.; Luque, R. Chem.Soc. Rev. 2014, 43, 7485. (b) Upton, B. M.; Kasko, A. M. Chem. Rev. 2016, 116, 2275. (c) Li, C. Z.; Zhao, X. C.; Wang, A. Q.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115, 11559. (d) Deng, W. P.; Zhang, H. X.; Xue, L. Q.; Zhang, Q. H.; Wang, Y. Chin. J. Catal. 2015, 36, 1440.

    5. [5]

    6. [6]

      (a) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439. (b) Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J.Am. Chem. Soc. 2012, 134, 20226.

    7. [7]

    8. [8]

      Shiramizu, M.; Toste, F. D. Angew. Chem., Int. Ed. 2012, 51, 8082.  doi: 10.1002/anie.v51.32

    9. [9]

      Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.  doi: 10.1021/cr900354u

    10. [10]

      Alonso, D. M.; Wettstein, S.; G. Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075.  doi: 10.1039/c2cs35188a

    11. [11]

    12. [12]

      (a) He, J.; Zhao, C.; Lercher, J. A. J. Am. Chem.Soc. 2012, 134, 20768. (b) Song, Q.; Wang, F.; Cai, J. Y.; Wang, Y. H.; Zhang, J. J.; Yu, W. Q.; Xu, J. Energy Environ. Sci.2013, 6, 994; (c) Wang, X.; Rinaldi, R. ChemSusChem 2012, 5, 1455. (d) Sturgeon, M. R.; O'Brien, M. R.; Ciesielski, P. N.; Katahira, R.; Kruger, J. S.; Chmely, S. C.; Hamlin, J.; Lawrence, K.; Hunsinger, G. B.; Foust, T. D.; Baldwin, R. M.; Biddy, M. J.; Beckham, G. T. Green Chem. 2014, 16, 824. (e) Song, Q.; Cai, J. Y.; Zhang, J. J.; Yu, W. Q.; Wang, F.; Xu, J. Chin. J. Catal. 2013, 34, 651.

    13. [13]

      Ren, Y. L.; Yan, M. J.; Wang, J. J.; Zhang, Z. C.; Yao, K. S. Angew. Chem., Int. Ed. 2013, 52, 12674.  doi: 10.1002/anie.201305342

    14. [14]

      Harm, R. G.; Markovits, I.-I. E.; Drees, M.; Mult, H. C.; Herrmann, W. A.; Cokoja, M.; Kuhn, F.-E. ChemSusChem 2014, 7, 429.  doi: 10.1002/cssc.201300918

    15. [15]

      Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2010, 132, 12554.  doi: 10.1021/ja106101f

    16. [16]

    17. [17]

      (a) Guo, H. W.; Zhang, B.; Li, C. Z.; Peng, C.; Dai, T.; Xie, H. B.; Wang, A. Q.; Zhang, T. ChemSusChem 2016, 9, 3220. (b) Heather, J.; Parker, H. J.; Chuck, C. J.; Woodman, T.; Jones, M. D. Catal. Today 2016, 269, 40. (c) Xiao, Y. W.; Xiu, Y. L. Chin. J. Chem. 2011, 22, 733.

    18. [18]

      (a) Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Thorn, D. L. Inorg. Chem. 2010, 49, 5611. (b) Hanson, S. K.; Wu, R.; Silks, L. A. P. Angew. Chem., Int. Ed. 2012, 51, 3410. (c) Zhang, G.; Scott, B. L.; Wu, R. L.; Silks, L. A. P.; Hanson, S. K. Inorg. Chem. 2012, 51, 7354. (d) Sedai, B.; Urrutia, C. D.; Baker, R. T.; Wu, R. L.; Silks, L. A. P.; Hanson, S. K. ACS. Catal.2013, 3, 3111. (e) Diaz-Urrutia, C.; Sedai, B.; Leckett, K. C.; Baker, R. T.; Hanson, S. ACS Sustanable Chem. Eng. 2016, 4, 6244.

    19. [19]

      (a) Ma, Y. Y.; Du, Z. T.; Liu, J. X.; Xia, F.; Xu, J. Green Chem.2015, 17, 4968. (b) Ma, Y. Y.; Du, Z. T.; Xia, F.; Ma, J. P.; Gao, J.; Xu, J. RSC Adv. 2016, 6, 110229.

    20. [20]

      (a) Gazi, S.; Ng, W. K. H.; Ganguly, R.; Moeljadi, A. M. P.; Soo, H. S. Chem. Sci. 2015, 6, 7130. (b) Mottweiler, J.; Puche, M.; Rauber, C.; Schmidt, T.; Concepcion, P.; Corma, A.; Bolm, C. ChemSusChem 2015, 8, 1206.

    21. [21]

      (a) Mottweiler, J.; Rinesch, T.; Besson, C.; Buendia, J.; Bolm, C. Green Chem. 2015, 17, 5001. (b) Stein, T V.; Hartog, T. D.; Buendia, J.; Stoychev, S.; Mottweiler, J.; Bolm, C.; Klankermayer, J.; Leitner, W. Angew. Chem., Int.Ed. 2015, 54, 5859. (c) Deng, W. P.; Zhang, H. X.; Wu, X. J.; Li, R. S.; Zhang, Q. H.; Wang, Y. Green Chem. 2015, 17, 5009. (d) Mitchell, L. J.; Moody, C. J. J. Org. Chem. 2014, 79, 11091.

    22. [22]

      (a) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2015, 515, 249. (b) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 6415.

    23. [23]

      (a) Patil, N. D.; Yan, N. Catal. Commun. 2016, 84, 155. (b) Yao, S. G.; Meier, M. S.; Pace Ⅲ, R. B.; Crocker, M. RSC Adv.2016, 6, 104742. (c) Mobley, J. K.; Yao, S. G.; Crocker, M.; Meier, M. RSC Adv. 2015, 5, 105136. (d) Nguyen, J. D.; Matsuura, B. S.; Stepemson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218. (e) Luo, J.; Zhang, J. J. Org. Chem. 2016, 81, 9131. (f) Karakas, D. M.; Bosque, I.; Stephenson, C. R. J. Org.Lett. 2016, 18, 5166.

    24. [24]

      (a) Wang, M.; Lu, J. M.; Zhang, X. C.; Li, L. H.; Li, Hong. J.; Luo, N. C.; Wang, F. ACS Catal. 2016, 6, 6086. (b) Wang, M.; Li, L. H.; Lu, J. M.; Li, H. J.; Zhang, X. C.; Liu, H. F.; Luo, N. C.; Wang, F. Green Chem. 2017, 19, 702. (c) Liu, H. F.; Wang, M.; Li, H. J.; Luo, N. C.; Xu, S. T.; Wang, F. J. Catal. 2017, 346, 170.

    25. [25]

      (a) Yang, Y. Y.; Fan, H. L.; Song, J. L.; Meng, Q. L.; Zhou, H. C.; Wu, L. Q.; Yang, G. Y.; Han, B. X. Chem. Coummn. 2015, 51, 4028. (b) Paitil, N. D.; Yan, N. Tetrahedron Lett. 2016, 57, 3024.

    26. [26]

      (a) Luo, N. C.; Wang, M.; Li, H.; Zhang, J.; Liu, H.; Wang, F. ACS Catal. 2016, 6, 7716. (b) Zhang, J.; Liu, Y.; Chiba, S.; Loh, T.-P. Chem. Commun. 2013, 49, 11439.

    27. [27]

      Dakkach, M.; Atlamsani, A.; Sebti, S. C. R. Chim. 2012, 15, 482.  doi: 10.1016/j.crci.2012.03.003

    28. [28]

      (a) Wang, W. H.; Niu, M.; Hou, Y. C.; Wu, W. Z.; Liu, Z. Y.; Liu, Q. Y.; Ren, S. H.; Marsh, K. N. Green Chem. 2014, 16, 2614. (b) Niu, M.; Hou, Y.-C.; Ren, S. H.; Wang, W. H.; Zheng, Q. T.; Wu, W. Z. Green Chem. 2015, 17, 335. (c) Niu, M.; Hou, Y. C.; Ren, S. H.; Wu, W. Z.; Marsh, K. N. Green Chem. 2015, 17, 453.

    29. [29]

    30. [30]

      (a) Shuai, L.; Amiri, M. T.; Questell-Santiago, Y. M.; Heroguel, F.; Li, Y. D.; Kim, H.; Meilan, R.; Chapple, C.; Ralph, J.; Luterbacher, J. Science 2016, 354, 329. (b) Wang, L.; Meng, Y. Z.; Wang, S. J.; Shang, X. Y.; Li, L.; Hay, A. S. Macromolecules 2004, 37, 3151.

    31. [31]

      Huang, X. Q.; Li, X. Y.; Zou, M. C.; Song, S.; Tang, C. H.; Yuan, Y. Z.; Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858.  doi: 10.1021/ja5073004

    32. [32]

      Jiang, Y. Y.; Yan, L.; Zhang, Q.; Fu, Y. ACS Catal. 2016, 6, 4399.  doi: 10.1021/acscatal.6b00239

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(11)
  • Abstract views(2306)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return