Citation: Zhang Liuwei, Qian Ming, Wang Jingyun. Progress in Research of Photo-controlled Drug Delivery Systems[J]. Acta Chimica Sinica, ;2017, 75(8): 770-782. doi: 10.6023/A17050194 shu

Progress in Research of Photo-controlled Drug Delivery Systems

  • Corresponding author: Wang Jingyun, wangjingyun67@dlut.edu.cn
  • Received Date: 2 May 2017
    Available Online: 19 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos.21376039, U1608222)the National Natural Science Foundation of China U1608222the National Natural Science Foundation of China 21376039

Figures(25)

  • The controlled drug delivery systems, due to their precise control of drug release in spatiotemporal level triggered by specific stimulating factors and advantages such as higher utilization ratio of drug, less side-effects to normal tissues and so forth, provide a new strategy for the precise treatment of many serious diseases, especially tumors. The materials that constitute the controlled drug delivery systems are called "smart materials" and they can respond to the stimuli of some internal (pH, redox, enzymes, etc.) or external (temperature, electrical/magnetic, ultrasonic and optica l, etc.) environments. Before and after the response to the specific stimulus, the composition or conformational of smart materials will be changed, damaging the original balance of the delivery systems and releasing the drug from the delivery systems. Amongst them, the photo-controlled drug delivery systems, which display drug release controlled by light, demonstrated extensive potential applications, and received wide attention from researchers. In recent years, photo-controlled drug delivery systems based on different photo-responsive groups have been designed and developed for precise photo-controlled release of drugs. Herein, in this review, we introduced four photo-responsive groups including photocleavage groups, photoisomerization groups, photo-induced rearrangement groups and photocrosslinking groups, and their different photo-responsive mechanisms. Firstly, the photocleavage groups represented by O-nitrobenzyl are able to absorb the energy of the photons, inducing the cleavage of some specific covalent bonds. Secondly, azobenzenes, as a kind of photoisomerization groups, are able to convert reversibly between the apolar trans form and the polar cis form upon different light irradiation. Thirdly, 2-diazo-1, 2-naphthoquinone as the representative of the photo-induced rearrangement groups will absorb specific photon energy, carrying out Wolff rearrangement reaction. Finally, coumarin is a promising category photocrosslinking groups that can undergo[2+2] cycloaddition reactions under light irradiation. The research progress of photo-controlled drug delivery systems based on different photo-responsive mechanisms were mainly reviewed. Additionally, the existing problems and the future research perspectives of photo-controlled drug delivery systems were proposed.
  • 加载中
    1. [1]

      Liu, M.; Du, H.; Zhang, W.; Zhai, G. Mater. Sci. Eng., C 2017, 71, 1267.  doi: 10.1016/j.msec.2016.11.030

    2. [2]

      Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Polymers 2016, 8, 268.  doi: 10.3390/polym8070268

    3. [3]

      Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. Biomaterials 2016, 101, 32.  doi: 10.1016/j.biomaterials.2016.05.024

    4. [4]

      Xia, J.; Zhang, L. W.; Qian, M.; Bao, Y. M.; Wang, J. Y.; Li, Y. C. J. Colloid Interface Sci. 2017, 498, 170.  doi: 10.1016/j.jcis.2017.03.059

    5. [5]

      Han, S. Y.; Samanta, A.; Xie, X. J.; Huang, L.; Peng, J. J.; Park, S. J.; The, D. B. L.; Choi, Y.; Chang, Y.; All, A. H.; Yang, Y. M.; Xing, B. G.; Liu, X. G. Adv. Mater. 2017, 29, 1700244.  doi: 10.1002/adma.201700244

    6. [6]

      Qiu, W. X.; Liu, L. H.; Li, S. Y.; Lei, Q.; Luo, G. F.; Zhang, X. Z. Small 2017, 13, 1603956.  doi: 10.1002/smll.v13.18

    7. [7]

      Li, Y. Y.; Jiang, C. H.; Zhang, D. W.; Wang, Y.; Ren, X. Y.; Ai, K. L.; Chen, X. S. Acta Biomater. 2017, 47, 124.  doi: 10.1016/j.actbio.2016.10.010

    8. [8]

      Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, W. J.; Peng, X. Y.; Liu, G.; Hsu, C. S.; Lee, C. S. Adv. Funct. Mater. 2017, 27, 1605094.  doi: 10.1002/adfm.v27.13

    9. [9]

      Rwei, A. Y.; Wang, W.; Kohane, D. S. Nano Today 2015, 10, 451.  doi: 10.1016/j.nantod.2015.06.004

    10. [10]

      Yu, L. L.; Yao, L.; Yang, L. Y. Chem. Ind. Eng. Prog. 2012, 31, 1065(in Chinese).
       

    11. [11]

      Huang, Y.; Dong, R. J.; Zhu, X. Y.; Yan, D. Y. Soft Matter 2014, 10, 6121.  doi: 10.1039/C4SM00871E

    12. [12]

      Du, X.; Jiang, Y.; Zhuo, R.; Jiang, X. J. Polym. Sci., Part A:Polym. Chem. 2016, 54, 2855.  doi: 10.1002/pola.v54.18

    13. [13]

      Ye, Z.; Guo, J. J.; Wu, D. W.; Tan, M.; Xiong, X.; Yin, Y.; He, G. Carbohydr. Polym. 2015, 132, 520.  doi: 10.1016/j.carbpol.2015.06.077

    14. [14]

      Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. J. Mater. Chem. B 2013, 1, 5942.  doi: 10.1039/c3tb21206h

    15. [15]

      Li, H.; Tong, W.; Gao, C. J. Colloid Interface Sci. 2016, 463, 22.  doi: 10.1016/j.jcis.2015.10.041

    16. [16]

      Lux, C.; Lux, J.; Collet, G.; He, S.; Chan, M.; Olejniczak, J.; Foucault-Collet, A.; Almutairi, A. Biomacromolecules 2015, 16, 3286.  doi: 10.1021/acs.biomac.5b00950

    17. [17]

      Dispinar, T.; Colard, C. A. L.; Du Prez, F. E. Polym. Chem. 2013, 4, 763.  doi: 10.1039/C2PY20735D

    18. [18]

      Wang, Q.; Coffinier, Y.; Li, M.; Boukherroub, R.; Szunerits, S. Langmuir 2016, 32, 6515.  doi: 10.1021/acs.langmuir.6b00734

    19. [19]

      Chen, Z.; Li, N.; Chen, L.; Lee, J.; Gassensmith, J. J. Small 2016, 12, 4563.  doi: 10.1002/smll.v12.33

    20. [20]

      Cui, L.; Zhang, F.; Wang, Q.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; An, N.; Qu, F. J. Mater. Chem. B 2015, 3, 7046.  doi: 10.1039/C5TB00709G

    21. [21]

      Chen, G. J.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q. F.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W. P.; Chen, H.; Gong, S. Q. Adv. Funct. Mater. 2017, 27. 1604671  doi: 10.1002/adfm.v27.8

    22. [22]

      Olejniczak, J.; Nguyen Huu, V. A.; Lux, J.; Grossman, M.; He, S.; Almutairi, A. Chem. Commun. 2015, 51, 16980.  doi: 10.1039/C5CC06143A

    23. [23]

      Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, L.; Duan, H. Nanoscale 2013, 5, 5816.  doi: 10.1039/C3NR01350B

    24. [24]

      Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 2601.  doi: 10.1021/bm400451v

    25. [25]

      Li, Y.; Qian, Y.; Liu, T.; Zhang, G.; Liu, S. Biomacromolecules 2012, 13, 3877.  doi: 10.1021/bm301425j

    26. [26]

      Huang, Q.; Liu, T.; Bao, C.; Lin, Q.; Ma, M.; Zhu, L. J. Mater. Chem. B 2014, 2, 3333.

    27. [27]

      Cao, J.; Huang, S.; Chen, Y.; Li, S.; Li, X.; Deng, D.; Qian, Z.; Tang, L.; Gu, Y. Biomaterials 2013, 34, 6272.  doi: 10.1016/j.biomaterials.2013.05.008

    28. [28]

      Zhang, R.; Yao, R.; Ding, B.; Shen, Y.; Shui, S.; Wang, L.; Li, Y.; Yang, X.; Tao, W. Adv. Mater. Sci. Eng. 2014, 2014, 1.

    29. [29]

      Liang, Y.; Gao, W. X.; Peng, X. Y.; Deng, X.; Sun, C. Z.; Xu, H. Y.; He, B. Biomaterials 2016, 100, 76.  doi: 10.1016/j.biomaterials.2016.05.023

    30. [30]

      Huo, H. H.; Ma, X. Y.; Dong, Y. Q.; Qu, F. J. Eur. Polym. J. 2017, 87, 331.  doi: 10.1016/j.eurpolymj.2016.12.038

    31. [31]

      Hu, X.; Feeney, M. J.; McIntosh, E.; Mullahoo, J.; Jia, F.; Xu, Q.; Thomas, S. W. ACS Appl. Mater. Inter. 2016, 8, 23517.  doi: 10.1021/acsami.6b07366

    32. [32]

      Fomina, N.; McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. J. Am. Chem. Soc. 2010, 132, 9540.  doi: 10.1021/ja102595j

    33. [33]

      Kumar, S.; Allard, J. F.; Morris, D.; Dory, Y. L.; Lepage, M.; Zhao, Y. J. Mater. Chem. 2012, 22, 7252.  doi: 10.1039/c2jm16380b

    34. [34]

      Fatieiev, Y.; Croissant, J. G.; Alsaiari, S.; Moosa, B. A.; Anjum, D. H.; Khashab, N. M. ACS Appl. Mater. Inter. 2015, 7, 24993.  doi: 10.1021/acsami.5b07365

    35. [35]

      Huynh, C. T.; Nguyen, M. K.; Tonga, G. Y.; Longe, L.; Rotello, V. M.; Alsberg, E. Adv. Healthc. Mater. 2016, 5, 305.  doi: 10.1002/adhm.v5.3

    36. [36]

      Jiang, Z.; Li, H.; You, Y.; Wu, X.; Shao, S.; Gu, Q. J. Biomed. Mater. Res., Part A 2015, 103, 65.  doi: 10.1002/jbm.a.v103.1

    37. [37]

      Kohman, R. E.; Cha, S. S.; Man, H. Y.; Han, X. Nano Lett. 2016, 16, 2781.  doi: 10.1021/acs.nanolett.6b00530

    38. [38]

      Li, S.; Moosa, B. A.; Croissant, J. G.; Khashab, N. M. Angew. Chem., Int. Ed. 2015, 54, 6804.  doi: 10.1002/anie.201501615

    39. [39]

      Liu, W.; Liang, L.; Lo, P. K.; Gou, X. J.; Sun, X. H. Tetrahedron Lett. 2016, 57, 959.  doi: 10.1016/j.tetlet.2016.01.064

    40. [40]

      Lv, C.; Wang, Z.; Wang, P.; Tang, X. Int. J. Mol. Sci. 2012, 13, 16387.  doi: 10.3390/ijms131216387

    41. [41]

      Olejniczak, J.; Sankaranarayanan, J.; Viger, M. L.; Almutairi, A. ACS Macro Lett. 2013, 2, 683.  doi: 10.1021/mz400256x

    42. [42]

      Yu, L.; Ren, N.; Yang, K.; Zhang, M.; Su, L. J. Appl. Polym. Sci. 2016, 133, 1.

    43. [43]

      Lv, C.; Wang, Z.; Wang, P.; Tang, X. Langmuir 2012, 28, 9387.  doi: 10.1021/la301534h

    44. [44]

      Soleimani, A.; Borecki, A.; Gillies, E. R. Polym. Chem. 2014, 5, 7062.  doi: 10.1039/C4PY00996G

    45. [45]

      Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 16558.  doi: 10.1021/ja308876j

    46. [46]

      Dcona, M. M.; Sheldon, J. E.; Mitra, D.; Hartman, M. C.T. Bioorg. Med. Chem. Lett. 2017, 27, 466.  doi: 10.1016/j.bmcl.2016.12.036

    47. [47]

      Li, J. M.; Lee, W. Y.; Wu, T. Y.; Xu, J. B.; Zhang, K. Y.; Wong, D. S. H.; Li, R.; Li, G.; Bian, L. M. Biomaterials 2016, 110, 1.  doi: 10.1016/j.biomaterials.2016.09.011

    48. [48]

      Wong, P. T.; Chen, D.; Tang, S.; Yanik, S.; Payne, M.; Mukherjee, J.; Coulter, A.; Tang, K.; Tao, K.; Sun, K.; Baker, J. R., Jr.; Choi, S. K. Small 2015, 11, 6078.  doi: 10.1002/smll.201501575

    49. [49]

      Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.; Zhang, B.; Zhao, J. J.; Zhang, K. J. Am. Chem. Soc. 2015, 137, 6112.  doi: 10.1021/jacs.5b00795

    50. [50]

      Lin, Q.; Bao, C.; Yang, Y.; Liang, Q.; Zhang, D.; Cheng, S.; Zhu, L. Adv. Mater. 2013, 25, 1981.  doi: 10.1002/adma.201204455

    51. [51]

      Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363.  doi: 10.1002/adfm.v24.3

    52. [52]

      Tian, M.; Cheng, R. D.; Zhang, J.; Liu, Z. T.; Liu, Z. W.; Jiang, J. Q. Langmuir 2015, 32, 12.

    53. [53]

      Wang, Y. P.; Li, G.; Cheng, R. D.; Zhang, X.; Jiang, J. Q. Colloid Polym Sci. 2017, 295, 371.  doi: 10.1007/s00396-017-4013-0

    54. [54]

      Dorresteijn, R.; Billecke, N.; Parekh, S. H.; Klapper, M.; Müllen, K. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 200.  doi: 10.1002/pola.27363

    55. [55]

      Yu, G.; Yu, W.; Mao, Z.; Gao, C.; Huang, F. Small 2015, 11, 919.  doi: 10.1002/smll.v11.8

    56. [56]

      Barman, S.; Mukhopadhyay, S. K.; Behara, K. K.; Dey, S.; Singh, N. D. ACS Appl. Mater. Inter. 2014, 6, 7045.  doi: 10.1021/am500965n

    57. [57]

      Jana, A.; Devi, K. S.; Maiti, T. K.; Singh, N. D. J. Am. Chem. Soc. 2012, 134, 7656.  doi: 10.1021/ja302482k

    58. [58]

      Jana, A.; Nguyen, K. T.; Li, X.; Zhu, P.; Tan, N. S.; Ågren, H.; Zhao, Y. ACS Nano 2014, 8, 5939.  doi: 10.1021/nn501073x

    59. [59]

      Knežević, N. Ž.; Trewyn, B. G.; Lin, V. S. Chem. Commun. 2011, 47, 2817.  doi: 10.1039/c0cc04424e

    60. [60]

      Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602(in Chinese).  doi: 10.7503/cjcu20130795
       

    61. [61]

      Pan, G.; Feng, Z.; Wei, J.; Yu, Y. Acta Chim. Sinica 2013, 71, 733(in Chinese).
       

    62. [62]

      Aleandri, S.; Speziale, C.; Mezzenga, R.; Landau, E. M. Langmuir 2015, 31, 6981.  doi: 10.1021/acs.langmuir.5b01945

    63. [63]

      Pianowski, Z. L.; Karcher, J.; Schneider, K. Chem. Commun. 2016, 52, 3143.  doi: 10.1039/C5CC09633B

    64. [64]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415(in Chinese).  doi: 10.3866/PKU.WHXB201511191
       

    65. [65]

      Zhao, Q.; Wang, Y.; Yan, Y.; Huang, J. ACS Nano 2014, 8, 11341.  doi: 10.1021/nn5042366

    66. [66]

      Shao, L.; Hua, B.; Sun, J. F.; Li, Q.; Yang, J.; Yu, G. C. Tetrahedron Lett. 2017, 58, 1863.  doi: 10.1016/j.tetlet.2017.03.091

    67. [67]

      Croissant, J.; Chaix, A.; Mongin, O.; Wang, M.; Clement, S.; Raehm, L.; Durand, J. O.; Hugues, V.; Blanchard-Desce, M.; Maynadier, M.; Gallud, A.; Gary-Bobo, M.; Garcia, M.; Lu, J.; Tamanoi, F.; Ferris, D. P.; Tarn, D.; Zink, J. I. Small 2014, 10, 1752.  doi: 10.1002/smll.v10.9

    68. [68]

      Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. Angew. Chem., Int. Ed. 2012, 51, 8373.  doi: 10.1002/anie.v51.33

    69. [69]

      Zhao, J. W.; He, Z. S.; Li, B.; Cheng, T. Y.; Liu, G. H. Mater. Sci. Eng. C 2017, 73, 1.  doi: 10.1016/j.msec.2016.12.056

    70. [70]

      Cao, P. F.; Su, Z.; de Leon, A.; Advincula, R. C. ACS Macro Lett. 2015, 4, 58.  doi: 10.1021/mz500632r

    71. [71]

      Wang, Y.; Li, B.; Zhang, L.; Song, H.; Zhang, L. ACS Appl. Mater. Inter. 2013, 5, 11.  doi: 10.1021/am302492e

    72. [72]

      Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106.  doi: 10.1039/C5RA28143A

    73. [73]

      Klajn, R. Chem. Soc. Rev. 2013, 43, 148.

    74. [74]

      Ma, L.; Li, J.; Han, D.; Geng, H.; Chen, G.; Li, Q. Macromol. Chem. Phys. 2013, 214, 716.  doi: 10.1002/macp.v214.6

    75. [75]

      Wang, B.; Chen, K.; Yang, R.; Yang, F.; Liu, J. Carbohydr. Polym. 2014, 103, 510.  doi: 10.1016/j.carbpol.2013.12.062

    76. [76]

      Schenderlein, H.; Voss, A.; Stark, R. W.; Biesalski, M. Langmuir 2013, 29, 4525.  doi: 10.1021/la305073p

    77. [77]

      Khakzad, F.; Mahdavian, A. R.; Salehi, M. H.; Rezaee Shirin-Abadi, A.; Cunningham, M. Polymers 2016, 101, 274.  doi: 10.1016/j.polymer.2016.08.073

    78. [78]

      Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. J. Am. Chem. Soc. 2012, 134, 8848.  doi: 10.1021/ja211888a

    79. [79]

      Chen, S.; Jiang, F.; Cao, Z.; Wang, G.; Dang, Z. M. Chem. Commun. 2015, 51, 12633.  doi: 10.1039/C5CC04087F

    80. [80]

      Rosario, R.; Gust, D.; Hayes, M.; Jahnke, F.; Springer, J.; Garcia, A. A. Langmuir 2002, 18, 8062.  doi: 10.1021/la025963l

    81. [81]

      Dattilo, D.; Armelao, L.; Fois, G.; Mistura, G.; Maggini, M. Langmuir 2008, 23, 12945.

    82. [82]

      Chen, L.; Wang, W.; Su, B.; Wen, Y.; Li, C.; Zhou, Y.; Li, M.; Shi, X.; Du, H.; Song, Y. ACS Nano 2014, 8, 744.  doi: 10.1021/nn405398d

    83. [83]

      Goodwin, A. P.; Mynar, J. L.; Ma, Y.; And, G. R. F.; Fréchet, J. M. J. J. Am. Chem. Soc. 2005, 127, 9952.  doi: 10.1021/ja0523035

    84. [84]

      Tian, F.; Yu, Y.; Wang, C.; Yang, S. Macromolecules 2008, 41, 3385.  doi: 10.1021/ma800142j

    85. [85]

      Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Macromol. Rapid Commun. 2011, 32, 1077.  doi: 10.1002/marc.v32.14

    86. [86]

      Yuan, Y.; Wang, Z.; Cai, P.; Liu, J.; Liao, L. D.; Hong, M.; Chen, X.; Thakor, N.; Liu, B. Nanoscale 2015, 7, 3067.  doi: 10.1039/C4NR06420H

    87. [87]

      Liu, G. Y.; Chen, C. J.; Li, D. D.; Wang, S. S.; Ji, J. J. Mater. Chem. 2012, 22, 16865.  doi: 10.1039/c2jm00045h

    88. [88]

      Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. J. Am. Chem. Soc. 2005, 127, 9952.  doi: 10.1021/ja0523035

    89. [89]

      Mynar, J. L.; Goodwin, A. P.; Cohen, J. A.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. Chem. Commun. 2007, 20, 2081.

    90. [90]

      Sun, L.; Zhu, B.; Su, Y.; Dong, C. M. Polym. Chem. 2014, 5, 1605.  doi: 10.1039/C3PY00533J

    91. [91]

      Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S. Adv. Drug Deliv. Rev. 2014, 66, 58.  doi: 10.1016/j.addr.2013.09.008

    92. [92]

      O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev. 2006, 35, 1068.  doi: 10.1039/b514858h

    93. [93]

      Talelli, M.; Barz, M.; Rijcken, C. J.; Kiessling, F.; Hennink, W. E.; Lammers, T. Nano Today 2015, 10, 93.  doi: 10.1016/j.nantod.2015.01.005

    94. [94]

      Chung, C. M.; Roh, Y. S.; Cho, S. Y.; Kim, J. G. Chem. Mater. 2004, 16, 3982.  doi: 10.1021/cm049394+

    95. [95]

      Yusa, S.; Sugahara, M.; Endo, T.; Morishima, Y. Langmuir 2009, 25, 5258.  doi: 10.1021/la803878s

    96. [96]

      Sandholzer, M.; Bichler, S.; Stelzer, F.; Slugovc, C. J. Polym. Sci., Part A:Polym. Chem. 2008, 46, 2402.  doi: 10.1002/pola.v46:7

    97. [97]

      Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev. 2004, 104, 3059.  doi: 10.1021/cr030037c

    98. [98]

      Maddipatla, M.; Wehrung, D.; Tang, C.; Fan, W.; Oyewumi, M. O.; Miyoshi, T.; Joy, A. Macromolecules 2013, 46, 5133.  doi: 10.1021/ma400584y

    99. [99]

      Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330(in Chinese).
       

    100. [100]

      Wang, Q.; Cheng, M.; Jiang, J. L.; Wang, L. Y. Chin. Chem. Lett. 2017, 28, 793.  doi: 10.1016/j.cclet.2017.02.008

    101. [101]

      Zhao, Y.; Bertrand, J.; Tong, X.; Zhao, Y. Langmuir 2009, 25, 13151.  doi: 10.1021/la901835z

    102. [102]

      Jiang, J.; Qi, B.; Lepage, M. A.; Zhao, Y. Macromolecules 2007, 40, 790.  doi: 10.1021/ma062493j

    103. [103]

      He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Langmuir 2011, 27, 436.  doi: 10.1021/la1040322

    104. [104]

      He, J.; Xia, T.; Tremblay, L.; Zhao, Y. Macromolecules 2009, 42, 7267.  doi: 10.1021/ma901817k

    105. [105]

      He, J.; Xia, T.; Zhao, Y. Macromolecules 2009, 42, 4845.  doi: 10.1021/ma900665v

    106. [106]

      Babin, J.; Lepage, M.; Zhao, Y. Macromolecules 2008, 41, 1246.  doi: 10.1021/ma702422y

    107. [107]

      Jin, Q.; Mitschang, F.; Agarwal, S. Biomacromolecules 2011, 12, 3684.  doi: 10.1021/bm2009125

    108. [108]

      Guo, A.; Liu, G.; Tao, J. Macromolecules 1996, 29, 2487.  doi: 10.1021/ma951354r

    109. [109]

      Ding, J.; Liu, G. Macromolecules 1998, 31, 6554.  doi: 10.1021/ma980710d

    110. [110]

      Ding, J.; Liu, G. Chem. Mater. 1998, 10, 537.  doi: 10.1021/cm970546t

    111. [111]

      Yang, H.; Lin, J.; Wang, Z.; Dicicco, A.; Lévy, D.; Keller, P. Macromolecules 2011, 44, 159.  doi: 10.1021/ma1016264

    112. [112]

      Xie, H.; He, M. J.; Deng, X. Y.; Du, L.; Fan, C. J.; Yang, K. K.; Wang, Y. Z. ACS Appl. Mater. Inter. 2016, 8, 9431.  doi: 10.1021/acsami.6b00704

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(232)
  • Abstract views(6539)
  • HTML views(2334)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return