Citation: Zhang Liuwei, Qian Ming, Wang Jingyun. Progress in Research of Photo-controlled Drug Delivery Systems[J]. Acta Chimica Sinica, ;2017, 75(8): 770-782. doi: 10.6023/A17050194 shu

Progress in Research of Photo-controlled Drug Delivery Systems

  • Corresponding author: Wang Jingyun, wangjingyun67@dlut.edu.cn
  • Received Date: 2 May 2017
    Available Online: 19 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos.21376039, U1608222)the National Natural Science Foundation of China U1608222the National Natural Science Foundation of China 21376039

Figures(25)

  • The controlled drug delivery systems, due to their precise control of drug release in spatiotemporal level triggered by specific stimulating factors and advantages such as higher utilization ratio of drug, less side-effects to normal tissues and so forth, provide a new strategy for the precise treatment of many serious diseases, especially tumors. The materials that constitute the controlled drug delivery systems are called "smart materials" and they can respond to the stimuli of some internal (pH, redox, enzymes, etc.) or external (temperature, electrical/magnetic, ultrasonic and optica l, etc.) environments. Before and after the response to the specific stimulus, the composition or conformational of smart materials will be changed, damaging the original balance of the delivery systems and releasing the drug from the delivery systems. Amongst them, the photo-controlled drug delivery systems, which display drug release controlled by light, demonstrated extensive potential applications, and received wide attention from researchers. In recent years, photo-controlled drug delivery systems based on different photo-responsive groups have been designed and developed for precise photo-controlled release of drugs. Herein, in this review, we introduced four photo-responsive groups including photocleavage groups, photoisomerization groups, photo-induced rearrangement groups and photocrosslinking groups, and their different photo-responsive mechanisms. Firstly, the photocleavage groups represented by O-nitrobenzyl are able to absorb the energy of the photons, inducing the cleavage of some specific covalent bonds. Secondly, azobenzenes, as a kind of photoisomerization groups, are able to convert reversibly between the apolar trans form and the polar cis form upon different light irradiation. Thirdly, 2-diazo-1, 2-naphthoquinone as the representative of the photo-induced rearrangement groups will absorb specific photon energy, carrying out Wolff rearrangement reaction. Finally, coumarin is a promising category photocrosslinking groups that can undergo[2+2] cycloaddition reactions under light irradiation. The research progress of photo-controlled drug delivery systems based on different photo-responsive mechanisms were mainly reviewed. Additionally, the existing problems and the future research perspectives of photo-controlled drug delivery systems were proposed.
  • 加载中
    1. [1]

      Liu, M.; Du, H.; Zhang, W.; Zhai, G. Mater. Sci. Eng., C 2017, 71, 1267.  doi: 10.1016/j.msec.2016.11.030

    2. [2]

      Yin, J.; Chen, Y.; Zhang, Z. H.; Han, X. Polymers 2016, 8, 268.  doi: 10.3390/polym8070268

    3. [3]

      Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. Biomaterials 2016, 101, 32.  doi: 10.1016/j.biomaterials.2016.05.024

    4. [4]

      Xia, J.; Zhang, L. W.; Qian, M.; Bao, Y. M.; Wang, J. Y.; Li, Y. C. J. Colloid Interface Sci. 2017, 498, 170.  doi: 10.1016/j.jcis.2017.03.059

    5. [5]

      Han, S. Y.; Samanta, A.; Xie, X. J.; Huang, L.; Peng, J. J.; Park, S. J.; The, D. B. L.; Choi, Y.; Chang, Y.; All, A. H.; Yang, Y. M.; Xing, B. G.; Liu, X. G. Adv. Mater. 2017, 29, 1700244.  doi: 10.1002/adma.201700244

    6. [6]

      Qiu, W. X.; Liu, L. H.; Li, S. Y.; Lei, Q.; Luo, G. F.; Zhang, X. Z. Small 2017, 13, 1603956.  doi: 10.1002/smll.v13.18

    7. [7]

      Li, Y. Y.; Jiang, C. H.; Zhang, D. W.; Wang, Y.; Ren, X. Y.; Ai, K. L.; Chen, X. S. Acta Biomater. 2017, 47, 124.  doi: 10.1016/j.actbio.2016.10.010

    8. [8]

      Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, W. J.; Peng, X. Y.; Liu, G.; Hsu, C. S.; Lee, C. S. Adv. Funct. Mater. 2017, 27, 1605094.  doi: 10.1002/adfm.v27.13

    9. [9]

      Rwei, A. Y.; Wang, W.; Kohane, D. S. Nano Today 2015, 10, 451.  doi: 10.1016/j.nantod.2015.06.004

    10. [10]

      Yu, L. L.; Yao, L.; Yang, L. Y. Chem. Ind. Eng. Prog. 2012, 31, 1065(in Chinese).
       

    11. [11]

      Huang, Y.; Dong, R. J.; Zhu, X. Y.; Yan, D. Y. Soft Matter 2014, 10, 6121.  doi: 10.1039/C4SM00871E

    12. [12]

      Du, X.; Jiang, Y.; Zhuo, R.; Jiang, X. J. Polym. Sci., Part A:Polym. Chem. 2016, 54, 2855.  doi: 10.1002/pola.v54.18

    13. [13]

      Ye, Z.; Guo, J. J.; Wu, D. W.; Tan, M.; Xiong, X.; Yin, Y.; He, G. Carbohydr. Polym. 2015, 132, 520.  doi: 10.1016/j.carbpol.2015.06.077

    14. [14]

      Ji, W.; Li, N.; Chen, D.; Qi, X.; Sha, W.; Jiao, Y.; Xu, Q.; Lu, J. J. Mater. Chem. B 2013, 1, 5942.  doi: 10.1039/c3tb21206h

    15. [15]

      Li, H.; Tong, W.; Gao, C. J. Colloid Interface Sci. 2016, 463, 22.  doi: 10.1016/j.jcis.2015.10.041

    16. [16]

      Lux, C.; Lux, J.; Collet, G.; He, S.; Chan, M.; Olejniczak, J.; Foucault-Collet, A.; Almutairi, A. Biomacromolecules 2015, 16, 3286.  doi: 10.1021/acs.biomac.5b00950

    17. [17]

      Dispinar, T.; Colard, C. A. L.; Du Prez, F. E. Polym. Chem. 2013, 4, 763.  doi: 10.1039/C2PY20735D

    18. [18]

      Wang, Q.; Coffinier, Y.; Li, M.; Boukherroub, R.; Szunerits, S. Langmuir 2016, 32, 6515.  doi: 10.1021/acs.langmuir.6b00734

    19. [19]

      Chen, Z.; Li, N.; Chen, L.; Lee, J.; Gassensmith, J. J. Small 2016, 12, 4563.  doi: 10.1002/smll.v12.33

    20. [20]

      Cui, L.; Zhang, F.; Wang, Q.; Lin, H.; Yang, C.; Zhang, T.; Tong, R.; An, N.; Qu, F. J. Mater. Chem. B 2015, 3, 7046.  doi: 10.1039/C5TB00709G

    21. [21]

      Chen, G. J.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q. F.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W. P.; Chen, H.; Gong, S. Q. Adv. Funct. Mater. 2017, 27. 1604671  doi: 10.1002/adfm.v27.8

    22. [22]

      Olejniczak, J.; Nguyen Huu, V. A.; Lux, J.; Grossman, M.; He, S.; Almutairi, A. Chem. Commun. 2015, 51, 16980.  doi: 10.1039/C5CC06143A

    23. [23]

      Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, L.; Duan, H. Nanoscale 2013, 5, 5816.  doi: 10.1039/C3NR01350B

    24. [24]

      Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D. Biomacromolecules 2013, 14, 2601.  doi: 10.1021/bm400451v

    25. [25]

      Li, Y.; Qian, Y.; Liu, T.; Zhang, G.; Liu, S. Biomacromolecules 2012, 13, 3877.  doi: 10.1021/bm301425j

    26. [26]

      Huang, Q.; Liu, T.; Bao, C.; Lin, Q.; Ma, M.; Zhu, L. J. Mater. Chem. B 2014, 2, 3333.

    27. [27]

      Cao, J.; Huang, S.; Chen, Y.; Li, S.; Li, X.; Deng, D.; Qian, Z.; Tang, L.; Gu, Y. Biomaterials 2013, 34, 6272.  doi: 10.1016/j.biomaterials.2013.05.008

    28. [28]

      Zhang, R.; Yao, R.; Ding, B.; Shen, Y.; Shui, S.; Wang, L.; Li, Y.; Yang, X.; Tao, W. Adv. Mater. Sci. Eng. 2014, 2014, 1.

    29. [29]

      Liang, Y.; Gao, W. X.; Peng, X. Y.; Deng, X.; Sun, C. Z.; Xu, H. Y.; He, B. Biomaterials 2016, 100, 76.  doi: 10.1016/j.biomaterials.2016.05.023

    30. [30]

      Huo, H. H.; Ma, X. Y.; Dong, Y. Q.; Qu, F. J. Eur. Polym. J. 2017, 87, 331.  doi: 10.1016/j.eurpolymj.2016.12.038

    31. [31]

      Hu, X.; Feeney, M. J.; McIntosh, E.; Mullahoo, J.; Jia, F.; Xu, Q.; Thomas, S. W. ACS Appl. Mater. Inter. 2016, 8, 23517.  doi: 10.1021/acsami.6b07366

    32. [32]

      Fomina, N.; McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. J. Am. Chem. Soc. 2010, 132, 9540.  doi: 10.1021/ja102595j

    33. [33]

      Kumar, S.; Allard, J. F.; Morris, D.; Dory, Y. L.; Lepage, M.; Zhao, Y. J. Mater. Chem. 2012, 22, 7252.  doi: 10.1039/c2jm16380b

    34. [34]

      Fatieiev, Y.; Croissant, J. G.; Alsaiari, S.; Moosa, B. A.; Anjum, D. H.; Khashab, N. M. ACS Appl. Mater. Inter. 2015, 7, 24993.  doi: 10.1021/acsami.5b07365

    35. [35]

      Huynh, C. T.; Nguyen, M. K.; Tonga, G. Y.; Longe, L.; Rotello, V. M.; Alsberg, E. Adv. Healthc. Mater. 2016, 5, 305.  doi: 10.1002/adhm.v5.3

    36. [36]

      Jiang, Z.; Li, H.; You, Y.; Wu, X.; Shao, S.; Gu, Q. J. Biomed. Mater. Res., Part A 2015, 103, 65.  doi: 10.1002/jbm.a.v103.1

    37. [37]

      Kohman, R. E.; Cha, S. S.; Man, H. Y.; Han, X. Nano Lett. 2016, 16, 2781.  doi: 10.1021/acs.nanolett.6b00530

    38. [38]

      Li, S.; Moosa, B. A.; Croissant, J. G.; Khashab, N. M. Angew. Chem., Int. Ed. 2015, 54, 6804.  doi: 10.1002/anie.201501615

    39. [39]

      Liu, W.; Liang, L.; Lo, P. K.; Gou, X. J.; Sun, X. H. Tetrahedron Lett. 2016, 57, 959.  doi: 10.1016/j.tetlet.2016.01.064

    40. [40]

      Lv, C.; Wang, Z.; Wang, P.; Tang, X. Int. J. Mol. Sci. 2012, 13, 16387.  doi: 10.3390/ijms131216387

    41. [41]

      Olejniczak, J.; Sankaranarayanan, J.; Viger, M. L.; Almutairi, A. ACS Macro Lett. 2013, 2, 683.  doi: 10.1021/mz400256x

    42. [42]

      Yu, L.; Ren, N.; Yang, K.; Zhang, M.; Su, L. J. Appl. Polym. Sci. 2016, 133, 1.

    43. [43]

      Lv, C.; Wang, Z.; Wang, P.; Tang, X. Langmuir 2012, 28, 9387.  doi: 10.1021/la301534h

    44. [44]

      Soleimani, A.; Borecki, A.; Gillies, E. R. Polym. Chem. 2014, 5, 7062.  doi: 10.1039/C4PY00996G

    45. [45]

      Yan, B.; Boyer, J. C.; Habault, D.; Branda, N. R.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 16558.  doi: 10.1021/ja308876j

    46. [46]

      Dcona, M. M.; Sheldon, J. E.; Mitra, D.; Hartman, M. C.T. Bioorg. Med. Chem. Lett. 2017, 27, 466.  doi: 10.1016/j.bmcl.2016.12.036

    47. [47]

      Li, J. M.; Lee, W. Y.; Wu, T. Y.; Xu, J. B.; Zhang, K. Y.; Wong, D. S. H.; Li, R.; Li, G.; Bian, L. M. Biomaterials 2016, 110, 1.  doi: 10.1016/j.biomaterials.2016.09.011

    48. [48]

      Wong, P. T.; Chen, D.; Tang, S.; Yanik, S.; Payne, M.; Mukherjee, J.; Coulter, A.; Tang, K.; Tao, K.; Sun, K.; Baker, J. R., Jr.; Choi, S. K. Small 2015, 11, 6078.  doi: 10.1002/smll.201501575

    49. [49]

      Tan, X.; Li, B. B.; Lu, X.; Jia, F.; Santori, C.; Menon, P.; Li, H.; Zhang, B.; Zhao, J. J.; Zhang, K. J. Am. Chem. Soc. 2015, 137, 6112.  doi: 10.1021/jacs.5b00795

    50. [50]

      Lin, Q.; Bao, C.; Yang, Y.; Liang, Q.; Zhang, D.; Cheng, S.; Zhu, L. Adv. Mater. 2013, 25, 1981.  doi: 10.1002/adma.201204455

    51. [51]

      Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin, Q.; Zhu, L.; Li, F. Adv. Funct. Mater. 2014, 24, 363.  doi: 10.1002/adfm.v24.3

    52. [52]

      Tian, M.; Cheng, R. D.; Zhang, J.; Liu, Z. T.; Liu, Z. W.; Jiang, J. Q. Langmuir 2015, 32, 12.

    53. [53]

      Wang, Y. P.; Li, G.; Cheng, R. D.; Zhang, X.; Jiang, J. Q. Colloid Polym Sci. 2017, 295, 371.  doi: 10.1007/s00396-017-4013-0

    54. [54]

      Dorresteijn, R.; Billecke, N.; Parekh, S. H.; Klapper, M.; Müllen, K. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 200.  doi: 10.1002/pola.27363

    55. [55]

      Yu, G.; Yu, W.; Mao, Z.; Gao, C.; Huang, F. Small 2015, 11, 919.  doi: 10.1002/smll.v11.8

    56. [56]

      Barman, S.; Mukhopadhyay, S. K.; Behara, K. K.; Dey, S.; Singh, N. D. ACS Appl. Mater. Inter. 2014, 6, 7045.  doi: 10.1021/am500965n

    57. [57]

      Jana, A.; Devi, K. S.; Maiti, T. K.; Singh, N. D. J. Am. Chem. Soc. 2012, 134, 7656.  doi: 10.1021/ja302482k

    58. [58]

      Jana, A.; Nguyen, K. T.; Li, X.; Zhu, P.; Tan, N. S.; Ågren, H.; Zhao, Y. ACS Nano 2014, 8, 5939.  doi: 10.1021/nn501073x

    59. [59]

      Knežević, N. Ž.; Trewyn, B. G.; Lin, V. S. Chem. Commun. 2011, 47, 2817.  doi: 10.1039/c0cc04424e

    60. [60]

      Ding, Y.; Yu, Y.; Wei, J. Acta Chim. Sinica 2014, 72, 602(in Chinese).  doi: 10.7503/cjcu20130795
       

    61. [61]

      Pan, G.; Feng, Z.; Wei, J.; Yu, Y. Acta Chim. Sinica 2013, 71, 733(in Chinese).
       

    62. [62]

      Aleandri, S.; Speziale, C.; Mezzenga, R.; Landau, E. M. Langmuir 2015, 31, 6981.  doi: 10.1021/acs.langmuir.5b01945

    63. [63]

      Pianowski, Z. L.; Karcher, J.; Schneider, K. Chem. Commun. 2016, 52, 3143.  doi: 10.1039/C5CC09633B

    64. [64]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415(in Chinese).  doi: 10.3866/PKU.WHXB201511191
       

    65. [65]

      Zhao, Q.; Wang, Y.; Yan, Y.; Huang, J. ACS Nano 2014, 8, 11341.  doi: 10.1021/nn5042366

    66. [66]

      Shao, L.; Hua, B.; Sun, J. F.; Li, Q.; Yang, J.; Yu, G. C. Tetrahedron Lett. 2017, 58, 1863.  doi: 10.1016/j.tetlet.2017.03.091

    67. [67]

      Croissant, J.; Chaix, A.; Mongin, O.; Wang, M.; Clement, S.; Raehm, L.; Durand, J. O.; Hugues, V.; Blanchard-Desce, M.; Maynadier, M.; Gallud, A.; Gary-Bobo, M.; Garcia, M.; Lu, J.; Tamanoi, F.; Ferris, D. P.; Tarn, D.; Zink, J. I. Small 2014, 10, 1752.  doi: 10.1002/smll.v10.9

    68. [68]

      Yan, H.; Teh, C.; Sreejith, S.; Zhu, L.; Kwok, A.; Fang, W.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. Angew. Chem., Int. Ed. 2012, 51, 8373.  doi: 10.1002/anie.v51.33

    69. [69]

      Zhao, J. W.; He, Z. S.; Li, B.; Cheng, T. Y.; Liu, G. H. Mater. Sci. Eng. C 2017, 73, 1.  doi: 10.1016/j.msec.2016.12.056

    70. [70]

      Cao, P. F.; Su, Z.; de Leon, A.; Advincula, R. C. ACS Macro Lett. 2015, 4, 58.  doi: 10.1021/mz500632r

    71. [71]

      Wang, Y.; Li, B.; Zhang, L.; Song, H.; Zhang, L. ACS Appl. Mater. Inter. 2013, 5, 11.  doi: 10.1021/am302492e

    72. [72]

      Moorthy, M. S.; Kim, H. B.; Bae, J. H.; Kim, S. H.; Ha, C. S. RSC Adv. 2016, 6, 29106.  doi: 10.1039/C5RA28143A

    73. [73]

      Klajn, R. Chem. Soc. Rev. 2013, 43, 148.

    74. [74]

      Ma, L.; Li, J.; Han, D.; Geng, H.; Chen, G.; Li, Q. Macromol. Chem. Phys. 2013, 214, 716.  doi: 10.1002/macp.v214.6

    75. [75]

      Wang, B.; Chen, K.; Yang, R.; Yang, F.; Liu, J. Carbohydr. Polym. 2014, 103, 510.  doi: 10.1016/j.carbpol.2013.12.062

    76. [76]

      Schenderlein, H.; Voss, A.; Stark, R. W.; Biesalski, M. Langmuir 2013, 29, 4525.  doi: 10.1021/la305073p

    77. [77]

      Khakzad, F.; Mahdavian, A. R.; Salehi, M. H.; Rezaee Shirin-Abadi, A.; Cunningham, M. Polymers 2016, 101, 274.  doi: 10.1016/j.polymer.2016.08.073

    78. [78]

      Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. J. Am. Chem. Soc. 2012, 134, 8848.  doi: 10.1021/ja211888a

    79. [79]

      Chen, S.; Jiang, F.; Cao, Z.; Wang, G.; Dang, Z. M. Chem. Commun. 2015, 51, 12633.  doi: 10.1039/C5CC04087F

    80. [80]

      Rosario, R.; Gust, D.; Hayes, M.; Jahnke, F.; Springer, J.; Garcia, A. A. Langmuir 2002, 18, 8062.  doi: 10.1021/la025963l

    81. [81]

      Dattilo, D.; Armelao, L.; Fois, G.; Mistura, G.; Maggini, M. Langmuir 2008, 23, 12945.

    82. [82]

      Chen, L.; Wang, W.; Su, B.; Wen, Y.; Li, C.; Zhou, Y.; Li, M.; Shi, X.; Du, H.; Song, Y. ACS Nano 2014, 8, 744.  doi: 10.1021/nn405398d

    83. [83]

      Goodwin, A. P.; Mynar, J. L.; Ma, Y.; And, G. R. F.; Fréchet, J. M. J. J. Am. Chem. Soc. 2005, 127, 9952.  doi: 10.1021/ja0523035

    84. [84]

      Tian, F.; Yu, Y.; Wang, C.; Yang, S. Macromolecules 2008, 41, 3385.  doi: 10.1021/ma800142j

    85. [85]

      Chen, C. J.; Liu, G. Y.; Shi, Y. T.; Zhu, C. S.; Pang, S. P.; Liu, X. S.; Ji, J. Macromol. Rapid Commun. 2011, 32, 1077.  doi: 10.1002/marc.v32.14

    86. [86]

      Yuan, Y.; Wang, Z.; Cai, P.; Liu, J.; Liao, L. D.; Hong, M.; Chen, X.; Thakor, N.; Liu, B. Nanoscale 2015, 7, 3067.  doi: 10.1039/C4NR06420H

    87. [87]

      Liu, G. Y.; Chen, C. J.; Li, D. D.; Wang, S. S.; Ji, J. J. Mater. Chem. 2012, 22, 16865.  doi: 10.1039/c2jm00045h

    88. [88]

      Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. J. Am. Chem. Soc. 2005, 127, 9952.  doi: 10.1021/ja0523035

    89. [89]

      Mynar, J. L.; Goodwin, A. P.; Cohen, J. A.; Ma, Y.; Fleming, G. R.; Fréchet, J. M. Chem. Commun. 2007, 20, 2081.

    90. [90]

      Sun, L.; Zhu, B.; Su, Y.; Dong, C. M. Polym. Chem. 2014, 5, 1605.  doi: 10.1039/C3PY00533J

    91. [91]

      Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S. Adv. Drug Deliv. Rev. 2014, 66, 58.  doi: 10.1016/j.addr.2013.09.008

    92. [92]

      O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev. 2006, 35, 1068.  doi: 10.1039/b514858h

    93. [93]

      Talelli, M.; Barz, M.; Rijcken, C. J.; Kiessling, F.; Hennink, W. E.; Lammers, T. Nano Today 2015, 10, 93.  doi: 10.1016/j.nantod.2015.01.005

    94. [94]

      Chung, C. M.; Roh, Y. S.; Cho, S. Y.; Kim, J. G. Chem. Mater. 2004, 16, 3982.  doi: 10.1021/cm049394+

    95. [95]

      Yusa, S.; Sugahara, M.; Endo, T.; Morishima, Y. Langmuir 2009, 25, 5258.  doi: 10.1021/la803878s

    96. [96]

      Sandholzer, M.; Bichler, S.; Stelzer, F.; Slugovc, C. J. Polym. Sci., Part A:Polym. Chem. 2008, 46, 2402.  doi: 10.1002/pola.v46:7

    97. [97]

      Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev. 2004, 104, 3059.  doi: 10.1021/cr030037c

    98. [98]

      Maddipatla, M.; Wehrung, D.; Tang, C.; Fan, W.; Oyewumi, M. O.; Miyoshi, T.; Joy, A. Macromolecules 2013, 46, 5133.  doi: 10.1021/ma400584y

    99. [99]

      Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330(in Chinese).
       

    100. [100]

      Wang, Q.; Cheng, M.; Jiang, J. L.; Wang, L. Y. Chin. Chem. Lett. 2017, 28, 793.  doi: 10.1016/j.cclet.2017.02.008

    101. [101]

      Zhao, Y.; Bertrand, J.; Tong, X.; Zhao, Y. Langmuir 2009, 25, 13151.  doi: 10.1021/la901835z

    102. [102]

      Jiang, J.; Qi, B.; Lepage, M. A.; Zhao, Y. Macromolecules 2007, 40, 790.  doi: 10.1021/ma062493j

    103. [103]

      He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Langmuir 2011, 27, 436.  doi: 10.1021/la1040322

    104. [104]

      He, J.; Xia, T.; Tremblay, L.; Zhao, Y. Macromolecules 2009, 42, 7267.  doi: 10.1021/ma901817k

    105. [105]

      He, J.; Xia, T.; Zhao, Y. Macromolecules 2009, 42, 4845.  doi: 10.1021/ma900665v

    106. [106]

      Babin, J.; Lepage, M.; Zhao, Y. Macromolecules 2008, 41, 1246.  doi: 10.1021/ma702422y

    107. [107]

      Jin, Q.; Mitschang, F.; Agarwal, S. Biomacromolecules 2011, 12, 3684.  doi: 10.1021/bm2009125

    108. [108]

      Guo, A.; Liu, G.; Tao, J. Macromolecules 1996, 29, 2487.  doi: 10.1021/ma951354r

    109. [109]

      Ding, J.; Liu, G. Macromolecules 1998, 31, 6554.  doi: 10.1021/ma980710d

    110. [110]

      Ding, J.; Liu, G. Chem. Mater. 1998, 10, 537.  doi: 10.1021/cm970546t

    111. [111]

      Yang, H.; Lin, J.; Wang, Z.; Dicicco, A.; Lévy, D.; Keller, P. Macromolecules 2011, 44, 159.  doi: 10.1021/ma1016264

    112. [112]

      Xie, H.; He, M. J.; Deng, X. Y.; Du, L.; Fan, C. J.; Yang, K. K.; Wang, Y. Z. ACS Appl. Mater. Inter. 2016, 8, 9431.  doi: 10.1021/acsami.6b00704

  • 加载中
    1. [1]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    18. [18]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    19. [19]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

Metrics
  • PDF Downloads(276)
  • Abstract views(7454)
  • HTML views(2682)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return