Citation: Lin Yao, Ying Yilun, Gao Rui, Wang Huifeng, Long Yitao. Analysis of Single-entity Anisotropy with a Solid-state Nanopore[J]. Acta Chimica Sinica, ;2017, 75(7): 675-678. doi: 10.6023/A17040191 shu

Analysis of Single-entity Anisotropy with a Solid-state Nanopore

  • Corresponding author: Ying Yilun, yilunying@ecust.edu.cn Wang Huifeng, whuifeng@ecust.edu.cn
  • Received Date: 30 April 2017

    Fund Project: the National Natural Science Foundation of China 21505043the Fundamental Research Funds for the Central Universities 222201714012the Fundamental Research Funds for the Central Universities 222201717003the National Natural Science Foundation of China 21327807the Fundamental Research Funds for the Central Universities 222201718001the National Natural Science Foundation of China 21421004

Figures(3)

  • Solid-state nanopore has emerging as a promising tool for detection and analysis of single molecules due to its advantages of high stability, easy control of diameter and channel length, and the potential for integration into devices and arrays.Therefore, there are intensive studies regarding nanopore-based detection of DNAs, proteins, polymers and other small molecules.The electrochemical confined space of nanopore could efficiently convert the information in single biological molecules with anisotropy characters into measurable electrochemical signatures with high temporal resolution.The anisotropy characters of each analyte, due to its featured physical and chemical properties in different directions, strongly affects the translocation behavior of each single entity (single molecule, single nanoparticle, etc.).To analyze the single-entity anisotropy effects on nanopore translocation, here, we employed gold nanorods (GNRs) as a model for single entities with anisotropy to investigate its translocation behavior through a solid-state nanopore.We performed the GNRs translocation experiments in 10 mmol·L-1 KCl (pH 8) electrolyte solution with a 100 nm SiNx solid-state nanopore.The current trace of GNRs translocation through nanopores had been recorded with an ultra-sensitive current amplifier at a sampling rate of 100 kHz filtered at 5 kHz via a low-pass Bessel filter.At applied voltage of-600 mV, two types of characteristic current blockades were observed when single GNRs translocate through the pore.We found this two types of blockades are mainly related to two translocation orientation of GNRs due to its anisotropy.The smaller current blockades are due to the GNR passing through the pore vertically while the larger current blockades are due to the GNR passing through the pore horizontally.To verify our observation of this two types of GNRs translocation events, we employed a simple model which is based on the relationship between the blockade magnitude and the exclude ion volume.The calculated current blockades of two types of GNRs translocation events agree well with the experimental values.These results illustrate that the anisotropy of single entity is an important factor that should be taken into consideration in nanopore translocation.This work will lead to a better understanding of the translocation behavior of single entity with anisotropy in the electrochemical confined space of nanopore.Such understanding is vital to the development of the solid-state nanopore system as a useful single molecule analytical device.
  • 加载中
    1. [1]

      Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Doğan, F.; Japrung, D.; Edel, J. B. Chem. Soc. Rev. 2013, 42, 15.  doi: 10.1039/C2CS35286A

    2. [2]

      Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 15216.  doi: 10.1002/anie.v55.49

    3. [3]

      Lin, Y.; Shi, X.; Liu, S.-C.; Ying, Y.-L.; Li, Q.; Gao, R.; Fathi, F.; Long, Y.-T.; Tian, H. Chem. Commun. 2017, 53, 3539.  doi: 10.1039/C7CC00060J

    4. [4]

      Zhang, Y.; Wu, G.; Ma, J.; Yuan, Z.; Si, W.; Liu, L.; Sha, J.; Chen, Y. Sci. China Technol. Sci. 2015, 58, 519.

    5. [5]

      Wang, H.-Y.; Ying, Y.-L.; Li, Y.; Kraatz, H.-B.; Long, Y.-T. Anal. Chem. 2011, 83, 1746.  doi: 10.1021/ac1029874

    6. [6]

      Hu, Y.-X.; Ying, Y.-L.; Gu, Z.; Cao, C.; Yan, B.-Y.; Wang, H.-F.; Long, Y.-T. Chem. Commun. 2016, 52, 5542.  doi: 10.1039/C6CC01292B

    7. [7]

      Kwak, D. K.; Chae, H.; Lee, M. K.; Ha, J. H.; Goyal, G.; Kim, M. J.; Kim, K. B.; Chi, S. W. Angew. Chem. Int. Ed. 2016, 55, 5713.  doi: 10.1002/anie.201511601

    8. [8]

      Ying, Y.-L.; Zhang, J.-J.; Gao, R.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 13154.  doi: 10.1002/anie.201303529

    9. [9]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese).
       

    10. [10]

      Long, Y.-T.; Zhang, M.-N. Sci. China Ser. B 2009, 52, 731.

    11. [11]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese).
       

    12. [12]

      Dekker, C. Nat. Nanotechnol. 2007, 2, 209.  doi: 10.1038/nnano.2007.27

    13. [13]

      Guo, W.; Tian, Y.; Jiang, L. Acc. Chem. Res. 2013, 46, 2834.  doi: 10.1021/ar400024p

    14. [14]

      Bell, N. A. W.; Keyser, U. F. J. Am. Chem. Soc. 2015, 137, 2035.  doi: 10.1021/ja512521w

    15. [15]

      Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C. Nano Lett. 2015, 15, 3153.  doi: 10.1021/acs.nanolett.5b00249

    16. [16]

      Mahmood, M. A. I.; Ali, W.; Adnan, A.; Iqbal, S. M. J. Phys. Chem. B 2014, 118, 5799.  doi: 10.1021/jp411820w

    17. [17]

      Prabhu, A. S.; Jubery, T. Z. N.; Freedman, K. J.; Mulero, R.; Dutta, P.; Kim, M. J. J. Phys.:Condens. Matter 2010, 22, 454107.  doi: 10.1088/0953-8984/22/45/454107

    18. [18]

      Lan, W. J.; Holden, D. A.; Zhang, B.; White, H. S. Anal. Chem. 2011, 83, 3840.  doi: 10.1021/ac200312n

    19. [19]

      Arjmandi, N.; Van Roy, W.; Lagae, L.; Borghs, G. Anal. Chem. 2012, 84, 8490.  doi: 10.1021/ac300705z

    20. [20]

      Wang, Y.; Kececi, K.; Mirkin, M.; Mani, V. Chem. Sci. 2013, 4, 655.  doi: 10.1039/C2SC21502K

    21. [21]

      Venta, K.; Wanunu, M.; Drndić, M. Nano Lett. 2013, 13, 423.  doi: 10.1021/nl303576q

    22. [22]

      Venta, K. E.; Zanjani, M. B.; Ye, X.; Danda, G.; Murray, C. B.; Lukes, J. R.; Drndić, M. Nano Lett. 2014, 14, 5358.  doi: 10.1021/nl502448s

    23. [23]

      Goyal, G.; Freedman, K. J.; Kim, M. J. Anal. Chem. 2013, 85, 8180.  doi: 10.1021/ac4012045

    24. [24]

      Talaga, D. S.; Li, J. J. Am. Chem. Soc. 2009, 131, 9287.  doi: 10.1021/ja901088b

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(43)
  • Abstract views(2193)
  • HTML views(360)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return