Citation: Gu Yueqing, Yuan Hao, Fu Junkai, Gong Jianxian, Yang Zhen. Asymmetric Formal Synthesis of Cortistatins via a Gold-Catalyzed Semi-Pinacol Rearrangement Strategy[J]. Acta Chimica Sinica, ;2017, 75(8): 798-807. doi: 10.6023/A17040190 shu

Asymmetric Formal Synthesis of Cortistatins via a Gold-Catalyzed Semi-Pinacol Rearrangement Strategy

  • Corresponding author: Fu Junkai, fujk109@nenu.edu.cn Gong Jianxian, gongjx@pkusz.edu.cn Yang Zhen, zyang@pku.edu.cn
  • Received Date: 28 April 2017
    Available Online: 7 August 2017

    Fund Project: the National Natural Science Foundation of China 21372016the National Natural Science Foundation of China 21632002Project supported by the National Natural Science Foundation of China (Nos.21372016, 21572009 and 21632002)the National Natural Science Foundation of China 21572009

Figures(15)

  • Over the past decade, Gold complexes have emerged as efficient and mild catalysts for the transformation of substrates possessing alkyne functionality into a range of useful scaffolds. These powerful methods have enabled the development of novel approaches for the total synthesis of biologically active natural products by gold catalysis. In this case, we found that the intramolecular nucleophilic addition of a hydroxyl group to a carbon-carbon triple bond, which activated by a gold catalyst, followed by further useful transformation has proven to be an excellent method for rapid construction of structural diversity of molecular scaffolds. The cortistatins are a family of 11 steroidal alkaloids which exhibit significant biological activities. The intriguing biological properties and their low natural abundance have elevated cortistatins to be a typical target for both partial and total synthesis. Up to now, more than a dozen research groups have published approaches directed toward the synthesis of cortistatins, including one semi-synthesis, five total syntheses and five formal syntheses, as well as a number of synthetic studies about the pentacyclic core and some illuminating model studies. One of the biggest challenges for the synthesis of cortistatins is how to construct the unprecedented oxabicyclo [3.2.1]octane ring system which lies within a complex tetracarbocyclic skeleton. In our previous work, we have developed a gold-catalyzed semi-pinacol rearrangement strategy to diastereoselective synthesis of the oxabicyclo [3.2.1]octane ring system. The wide substrate scope as well as the high diastereoselectivity have made us to apply this method into the asymmetric formal synthesis of Cortistatins. Herein, full details about our efforts towards the formal synthesis of cortistatins were described by employing our developed gold-catalyzed cascade reaction to oxabicyclo[3.2.1]octane ring systems. This route is featured with a novel gold-catalyzed cascade reaction involving intramolecular nucleophilic addition of hydroxyl group to the carbon-carbon triple bond, followed by an oxonium ion initiated semi-pinacol-type 1, 2-migration to construct the key oxabicyclo [3.2.1]octane skeleton.
  • 加载中
    1. [1]

      Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M. J. Am. Chem. Soc. 2006, 128, 3148.  doi: 10.1021/ja057404h

    2. [2]

      (a) Aoki, S.; Watanabe, Y.; Tanabe, D.; Arai, M.; Suna, H.; Miyamoto, K.; Tsujibo, H.; Tsujikawa, K.; Yamamoto, H.; Kobayashi, M. Bioorg. Med.Chem. 2007, 15, 6758. (b) Watanabe, Y.; Aoki, S.; Tanabe, D.; Setiawan, A.; Kobayashi, M. Tetrahedron 2007, 63, 4074. (c) Aoki, S.; Watanabe, Y.; Tanabe, D.; Setiawan, A.; Arai, M.; Kobayashi, M. Tetrahedron Lett. 2007, 48, 4485.

    3. [3]

      For reviews on the synthesis of the cortistatins, see: (a) Nising, C. F.; Brase, S. Angew. Chem. Int. Ed. 2008, 47, 9389. Angew. Chem. 2008, 120, 9529. (b) Narayan, A. R. H.; Simmons, E. M.; Sarpong, R. Eur. J. Org. Chem.2010, 3553. (c) Chen, D. Y. K.; Tseng, C. C Org. Biomol. Chem.2010, 8, 2900.

    4. [4]

      (a) Shenvi, R. A.; Guerrero, C. A.; Shi, J.; Li, C. C.; Baran, P. S.J. Am. Chem. Soc. 2008, 130, 7241. (b) Shi, J.; Manolikakes, G.; Yeh, C. H.; Guerrero, C. A.; Shenvi, R. A.; Shigehisa, H.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 8014. (c) Nicolaou, K. C.; Sun, Y. P.; Peng, X. S.; Polet, D.; Chen, D. Y. Angew.Chem. Int. Ed. 2008, 47, 7310. Angew.Chem. 2008, 120, 7420. (d) Nicolaou, K. C.; Peng, X. S.; Sun, Y. P.; Polet, D.; Zou, B.; Lim, C. S. Chen, D. Y. J. Am. Chem.Soc. 2009, 131, 10587. (e) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. J. Am. Chem. Soc. 2008, 130, 16864. (f) Flyer, A. N.; Si, C.; Myers, A. G. Nat. Chem. 2010, 2, 886. (g) Yamashita, S.; Iso, K.; Kitajima, K.; Himuro, M.; Hirama, M.J. Org. Chem. 2011, 76, 2408. (h) Nilson, M. G.; Funk, R. L. J. Am. Chem. Soc. 2011, 133, 12451.

    5. [5]

      (a) Yamashita, S.; Iso, K.; Hirama, M. Org. Lett. 2008, 10, 3413. (b) Yamashita, S.; Kitajima, K.; Iso, K.; Hirama, M. Tetrahedron Lett. 2009, 50, 3277. (c) Simmons, E. M.; Hardin-Narayan, A. R.; Guo, X.; Sarpong, R. Tetrahedron 2010, 66, 4696. (d) Fang, L.; Chen, Y.; Huang, J.; Liu, L.; Quan, J.; Li, C. C.; Yang, Z. J. Org.Chem. 2011, 76, 2479. (e) Kuang, L. P.; Liu, L. L.; Chiu, P.Chem. Eur. J. 2015, 21, 14287.

    6. [6]

      (a) Dai, M.; Danishefsky, S. J. Tetrahedron Lett. 2008, 49, 6610. (b) Dai, M.; Wang, Z.; Danishefsky, S. J. Tetrahedron Lett.2008, 49, 6613. (c) Kurti, L.; Czako, B.; Corey, E. J. Org.Lett. 2008, 10, 5247. (d) Simmons, E. M.; Hardin, A. R.; Guo, X.; Sarpong, R. Angew. Chem. Int. Ed. 2008, 47, 6650. Angew. Chem. 2008, 120, 6752. (e) Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Tetrahedron Lett. 2008, 49, 7078. (f) Craft, D. T.; Gung, B. W. Tetrahedron Lett. 2008, 49, 5931. (g) Magnus, P.; Littich, R. Org. Lett. 2009, 11, 3938. (h) Yu, F.; Li, G.; Gao, P.; Gong, H.; Liu, Y.; Wu, Y.; Cheng, B.; Zhai, H.Org. Lett. 2010, 12, 5135. (i) Frie, J. L.; Jeffrey, C. S.; Sorensen, E. J. Org. Lett. 2009, 11, 5394. (j) Baumgartner, C.; Ma, S.; Liu, Q.; Stoltz, B. M. Org. Biomol. Chem.2010, 8, 2915. (k) Liu, L. L.; Chiu, P. Chem. Commun.2011, 47, 3416. (l) Kotoku, N.; Sumii, Y.; Kobayashi, M. Org.Lett. 2011, 13, 3514. (m) Wang, Z.; Dai, M. J.; Park, P. K.; Danishefsky, S. J. Tetrahedron 2011, 67, 10249. (n) Aquino, C.; Greszler, S. N.; Micalizio, G. C. Org. Lett. 2016, 18, 2624.

    7. [7]

      Fu, J.; Gu, Y.; Yuan, H.; Luo, T.; Li, S.; Lan, Y.; Gong, J.; Yang, Z. Nat. Commun. 2015, 6, 8617.

    8. [8]

      For selected reviews, see: (a) Hashmi, A. S. K. Chem. Rev.2007, 107, 3180. (b) Friend, C. M.; Hashmi, A. S. K. Acc. Chem.Res. 2014, 47, 729. (c) Zhang, L. Acc. Chem.Res. 2014, 47, 877. (d) Wang, Y. M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889. (e) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (f) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321. (g) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem.Res. 2016, 49, 2261.

    9. [9]

      (a) Shi, H.; Fang, L.; Tan, C.; Shi, L.; Zhang, W.; Li, C. C.; Luo, T.; Yang, Z. J. Am. Chem. Soc. 2011, 133, 14944. (b) Shan, Z.; Liu, J.; Xu, L.; Tang, Y.; Chen, J.; Yang, Z. Org. Lett. 2012, 14, 3712. (c) Yue, G.; Zhang, Y.; Fang, L.; Li, C.; Luo, T.; Yang, Z. Angew. Chem. Int. Ed. 2014, 53, 1837. Angew. Chem. 2014, 126, 1868. (d) Shi, H.; Tan, C.; Zhang, W.; Zhang, Z.; Long, R.; Luo, T.; Yang, Z. Org. Lett. 2015, 17, 2342.

    10. [10]

      For selected examples, see: (a) Antoniotti, S.; Genin, E.; Michelet, V.; Genêt, J. P. J. Am. Chem. Soc. 2005, 127, 9976. (b) Hashmi, A. S. K.; Bührle, M.; Wçlfle, M.; Rudolph, M.; Wieteck, M.; Rominger, F.; Frey, W. Chem. Eur. J. 2010, 16, 9846. (c) Bihelovic. F.; Saicic, R. N. Angew. Chem. Int.Ed. 2012, 51, 5687. Angew. Chem. 2012, 124, 5785. (d) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am. Chem.Soc. 2012, 134, 1078. (e) Zeng, X. Chem. Rev.2013, 113, 6864. (f) Li, D. Y.; Chen, H. J.; Liu, P. N. Angew.Chem. Int. Ed. 2016, 55, 373. Angew. Chem.2016, 128, 381.

    11. [11]

      (a) Barluenga, J.; Diéguez, A.; Fernández, A.; Rodríguez, F.; Fañanás, F. J. Angew. Chem. Int. Ed. 2006, 45, 2091. Angew. Chem. 2006, 118, 2145. (b) Barluenga, J.; Fernández, A.; Diéguez, A.; Rodríguez, F.; Fañanás, F. J. Chem. Eur.J. 2009, 15, 11660. (c) Krauter, C. M.; Hashmi, A. S. K.; Pernpointner, M. ChemCatChem 2010, 2, 1226. (d) Nagaraju, C.; Prasad, K. R. Angew. Chem. Int. Ed. 2014, 53, 10997;Angew. Chem. 2014, 126, 11177.

    12. [12]

      (a) Kirsch, S. F.; Binder, J. T.; Liébert, C.; Menz, H. Angew. Chem. Int. Ed.2006, 45, 5878. Angew. Chem. 2006, 118, 6010. (b) Crone, B.; Kirsch, S. F. Chem. Eur. J. 2008, 14, 3514. (c) Song, Z. L.; Fan, C. A.; Tu, Y. Q. Chem. Rev. 2011, 111, 7523. (d) Zhang, X. M.; Tu, Y. Q.; Zhang, F. M.; Chen, Z. H.; Wang, S. H. Chem. Soc.Rev. 2017, 46, 2272.

    13. [13]

      Gu, Y.; Zhang, P.; Fu, J.; Liu, S.; Lan, Y.; Gong, J.; Yang, Z. Adv. Synth. Catal. 2016, 358, 1392.  doi: 10.1002/adsc.201600218

    14. [14]

      (a) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahedron Lett.2004, 45, 7733. (b) Hemelaere, R.; Carreaux, F.; Carboni, B. J.Org. Chem. 2013, 78, 6786.

    15. [15]

      Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829.  doi: 10.1021/ja00385a066

    16. [16]

      Kotoku, N.; Sumii, Y.; Hayashi, T.; Kobayashi, M. Heterocycles 2011, 83, 1535.  doi: 10.3987/COM-11-12195

    17. [17]

      The X-ray crystallography data for compound 53, see SI of ref. 7.

    18. [18]

      Marḱo, I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J. M.; Quesnel, Y.; Vanherck, J. C. Angew. Chem. Int. Ed. 1999, 38, 3207. Angew. Chem. 1999, 111, 3411.

    19. [19]

      Ghosh, N.; Nayak, S.; Prabagar, B.; Sahoo, A. K. J. Org. Chem. 2014, 79, 2453  doi: 10.1021/jo4027319

    20. [20]

      Tan, D. S.; Dudley, G. B.; Danishefsky, S. Angew. Chem.Int. Ed. 2002, 41, 2185. Angew. Chem.2002, 114, 2289..

  • 加载中
    1. [1]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(5)
  • Abstract views(2103)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return