Citation: Yu Yue-Na, Xu Ming-Hua. Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis[J]. Acta Chimica Sinica, ;2017, 75(7): 655-670. doi: 10.6023/A17040181 shu

Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis

  • Corresponding author: Xu Ming-Hua, xumh@simm.ac.cn
  • Received Date: 20 April 2017

    Fund Project: the Program of Shanghai Academic Research Leaders 14XD1404400the National Natural Science Foundation of China 21472205the National Natural Science Foundation of China 21325209

Figures(45)

  • Transition-metal-catalyzed asymmetric transformations are among the most powerful and straightforward strategies to access various enantioenriched compounds.Hence, considerable efforts have been focused on the development of novel chiral ligands capable of highly efficient and enantioselective catalysis.The importance of olefin as ligand in transition-metal-catalyzed reactions wasn't realized until the report of the Zeise'salt in 1827.Nevertheless, application of chiral olefins as ligands for asymmetric catalysis has been overlooked for quite a long time owing to their relatively weak binding affinity toward the central metal.Since the groundbreaking work of Hayashi and Carreira in 2003~2004, chiral dienes as steering ligands in asymmetric catalysis have emerged as a fascinating new field.Given the weak coordination ability of olefins to transition-metals, functional groups with high coordination ability were considered to incorporate into the olefin framework to create a new type of hybrid olefin ligands for asymmetric catalysis.Over the past few years, a diverse range of hybrid olefin ligands were developed for various enantioselective transformations.Among these, phosphorus-based olefins represent a particularly interesting class of ligands since the first concept demonstration by Grützmacher in 2004, combining the strong coordinating phosphorus atom and the weak coordinating olefin into one ligand molecule.Typically, three structurally different types of phosphorus-based olefins are known in the literature, including phosphine-olefins, phosphoramidite/phosphinamidite-olefins, and phosphite/phosphinite-olefins.They have been successfully utilized in a series of transition-metal-catalyzed asymmetric reactions, such as iridium-catalyzed asymmetric hydrogenation of imines, allylic substitution; rhodium-catalyzed conjugate addition of organoboron reagents to α, β-unsaturated compounds, 1, 2-addition of organoboron reagents to imines/carbonyl compounds, intramolecular hydroacylation; and palladium-catalyzed asymmetric allylic alkylation/amination/etherification of allylic esters, as well as Suzuki-coupling reactions.In many cases, the reactions occur with high enantioselectivities, allows for access to a broad range of valuable chiral products.This paper reviews the literatures in this field and summarizes the remarkable progress and advances in the use of various P-olefins as powerful ligands for diverse transition metal-catalyzed asymmetric transformations since 2004.The aim is to offer an overview of the recent achievements in the rational design and development of new hybrid chiral olefin ligands for effective enantioselective catalysis.We hope that the current success of chiral phosphorus-olefin catalysis would provide an exciting opportunity for future exploration of chiral olefin ligands in a wide variety of asymmetric reactions.
  • 加载中
    1. [1]

    2. [2]

      Zeise, W. C. Poggendorff's Ann. Phys. 1827, 9, 632.

    3. [3]

      Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.  doi: 10.1021/ja037367z

    4. [4]

      Fisher, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628.  doi: 10.1021/ja0390707

    5. [5]

    6. [6]

      (a) Maire, P.; Deblon, S.; Breher, F.; Geier, J.; Böhler, C.; Rügger, H.; Schönberg, H.; Grützmacher, H. Chem. Eur. J. 2004, 10, 4198. (b) Thoumazet, C.; Ricard, L.; Grützmacher, H.; Floch, F. P. Chem. Commun. 2005, 41, 1592.

    7. [7]

      Piras, E.; Läng, F.; Rüegger, H.; Stein, D.; Wörle, M.; Grützmacher, H. Chem. Eur. J. 2006, 12, 5849.  doi: 10.1002/(ISSN)1521-3765

    8. [8]

      (a) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 4611. (b) Duan, W.; Iwamura, H.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 2130.

    9. [9]

      Kasák, P.; Arion, V. B.; Widhalm, M. Tetrahedron Asymmetry 2006, 17, 3084.  doi: 10.1016/j.tetasy.2006.11.022

    10. [10]

      (a) Štěpnička, P.; Císařová, I. Inorg. Chem. 2006, 45, 8785. (b) Stemmler, R, T.; Bolm, C. Synlett 2007, 9, 1365. (c) Csizmadiová, J.; Mečiarová, M.; Rakovský, E.; Horváth, B.; Šebesta, R. Eur. J. Org. Chem. 2011, 6110.

    11. [11]

      Liu, Z.; Du, H. Org. Lett. 2010, 12, 3054.  doi: 10.1021/ol101069y

    12. [12]

      (a) Wershofen, S.; Scharf, H.-G. Synthesis 1988, 854. (b) Bell, T. W.; Ciaccio, J. A. J. Org. Chem. 1993, 58, 5153. (c) Mukai, C.; Kim, J. S.; Sonobe, H.; Hanaoka, M. J. Org. Chem. 1999, 64, 6822. (d) Pandey, G.; Kapur, M. Org. Lett. 2002, 4, 3883. (e) Pandey, G.; Kapur, M.; Khan, M. I.; Gaikwad, S. M. Org. Biomol. Chem. 2003, 1, 3321. (f) Horváth, A.; Benner, J.; Bäckvall, J.-E. Eur. J. Org. Chem. 2004, 3240.

    13. [13]

      (a) Cao, Z.; Liu, Y.; Liu, Z.; Feng, X.; Zhuang, M.; Du, H. Org. Lett. 2011, 13, 2164. (b) Cao, Z.; Liu, Z.; Liu, Y.; Du, H. J. Org. Chem. 2011, 76, 6401. (c) Liu, Y.; Cao, Z.; Du, H. J. Org. Chem. 2012, 77, 4479.

    14. [14]

      (a) Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066. (b) Antczak, M. I.; Cai, F.; Ready, J. M. Org. Lett. 2011, 13, 184.

    15. [15]

      (a) Ogasawara, M.; Wu, W.-Y.; Arae, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Angew. Chem. Int. Ed. 2012, 51, 2951. (b) Ogasawara, M.; Tseng, Y. Y.; Arae, S.; Morita, T.; Nakaya, T.; Wu, W. Y.; Takahashi, T.; Kamikawa, K. J. Am. Chem. Soc. 2014, 136, 9377. (c) Kamikawa, K.; Tseng, Y.-Y.; Jian, J.-H.; Takahashi, T.; Ogasawara, M. J. Am. Chem. Soc. 2017, 139, 1545.

    16. [16]

      (a) Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Tetrahedron: Asymmetry 1995, 6, 47. (b) Taniguchi, N.; Uemura, M. Tetrahedron 1998, 54, 12775.

    17. [17]

      (a) Ferber, B.; Top, S.; Jaouen, G. J. Organomet. Chem.2004, 689, 4872. The chiral acetal directing group was originally introduced by Kagan for the preparation of planar-chiral ferrocene derivatives, see: (b) Riant, O.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc. 1993, 115, 5835. (c) Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B. J. Org. Chem. 1997, 62, 6733. (d) Geisler, F. M.; Helmchen, G. Synthesis 2006, 2201. (e) Wölfle, H.; Kopacka, H.; Wurst, K.; Ongania, K.-H.; Görtz, H.-H.; Preishuber-Pflügl, P.; Bildstein, B.J. Organomet. Chem. 2006, 691, 1197.

    18. [18]

      Sieber, J. D.; Chennamadhavuni, D.; Fandrick, K. R.; Qu, B.; Han, Z. S.; Savoie, J. Org. Lett. 2014, 16, 5494.  doi: 10.1021/ol5027798

    19. [19]

      Gandi, V. R.; Lu, Y.; Hayashi, T. Tetrahedron:Asymmetry 2015, 26, 679.  doi: 10.1016/j.tetasy.2015.05.004

    20. [20]

      Qiu, X.-L.; Qing, F.-L. J. Org. Chem. 2005, 70, 3826.  doi: 10.1021/jo050057+

    21. [21]

      Yamamoto, K.; Shimizu, T.; Igawa, K.; Tomooka, K.; Hirai, G.; Suemune, H.; Usui, K. Sci. Rep. 2016, 6, 36211.  doi: 10.1038/srep36211

    22. [22]

      Mino, T.; Nishikawa, K.; Asano, M.; Shima, Y.; Ebisawa, T.; Yoshidaa, Y.; Sakamotoa, M. Org. Biomol. Chem. 2016, 14, 7509.  doi: 10.1039/C6OB01354F

    23. [23]

      Shintani, R.; Narui, Y.; Hayashi, S.; Hayashi, T. Chem. Commun. 2011, 47, 6123.  doi: 10.1039/c1cc11823d

    24. [24]

      (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 3139. (b) Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3470. (c) Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 5568. (d) Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 8652. (e) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52, 7532. (f) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 994. (g) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3006.

    25. [25]

      (a) Liu, Z.; Cao, Z.; Du, H. Org. Biomol. Chem. 2011, 9, 5369. (b) Liu, Y.; Du, H. Org. Lett. 2013, 4, 740. (c) Liu, Y.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 125. (d) Li, G.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 5826.

    26. [26]

      Chen, Q.; Li, L.; Zhou, G.; Ma, X.; Zhang, L.; Guo, F.; Luo, Y.; Xia, W. Chem. Asian J. 2016, 11, 1518.  doi: 10.1002/asia.201600143

    27. [27]

      Minuth, T.; Boysen, M. M. K. Org. Lett. 2009, 11, 4212.  doi: 10.1021/ol901579g

    28. [28]

    29. [29]

      (a) Mariz, R.; Brice o, A.; Dorta, R. Organometallics 2008, 27, 6605. (b) Drinkel, E.; Briceño, A.; Dorta, R. Organometallics2010, 29, 2503.

    30. [30]

      Shintani, R.; Duan, W.-L.; Okamoto, K.; Hayashi, T. Tetrahedron:Asymmetry 2005, 16, 3400.  doi: 10.1016/j.tetasy.2005.08.050

    31. [31]

      (a) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276. (b) Jeker, O. F.; Kravina, A. G.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52, 12166.

    32. [32]

      (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science2013, 340, 1065. (b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.

    33. [33]

      Hoffman, T. J.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 10670.  doi: 10.1002/anie.201104595

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    20. [20]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

Metrics
  • PDF Downloads(52)
  • Abstract views(2945)
  • HTML views(498)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return