Citation: Yu Yue-Na, Xu Ming-Hua. Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis[J]. Acta Chimica Sinica, ;2017, 75(7): 655-670. doi: 10.6023/A17040181 shu

Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis

  • Corresponding author: Xu Ming-Hua, xumh@simm.ac.cn
  • Received Date: 20 April 2017

    Fund Project: the Program of Shanghai Academic Research Leaders 14XD1404400the National Natural Science Foundation of China 21472205the National Natural Science Foundation of China 21325209

Figures(45)

  • Transition-metal-catalyzed asymmetric transformations are among the most powerful and straightforward strategies to access various enantioenriched compounds.Hence, considerable efforts have been focused on the development of novel chiral ligands capable of highly efficient and enantioselective catalysis.The importance of olefin as ligand in transition-metal-catalyzed reactions wasn't realized until the report of the Zeise'salt in 1827.Nevertheless, application of chiral olefins as ligands for asymmetric catalysis has been overlooked for quite a long time owing to their relatively weak binding affinity toward the central metal.Since the groundbreaking work of Hayashi and Carreira in 2003~2004, chiral dienes as steering ligands in asymmetric catalysis have emerged as a fascinating new field.Given the weak coordination ability of olefins to transition-metals, functional groups with high coordination ability were considered to incorporate into the olefin framework to create a new type of hybrid olefin ligands for asymmetric catalysis.Over the past few years, a diverse range of hybrid olefin ligands were developed for various enantioselective transformations.Among these, phosphorus-based olefins represent a particularly interesting class of ligands since the first concept demonstration by Grützmacher in 2004, combining the strong coordinating phosphorus atom and the weak coordinating olefin into one ligand molecule.Typically, three structurally different types of phosphorus-based olefins are known in the literature, including phosphine-olefins, phosphoramidite/phosphinamidite-olefins, and phosphite/phosphinite-olefins.They have been successfully utilized in a series of transition-metal-catalyzed asymmetric reactions, such as iridium-catalyzed asymmetric hydrogenation of imines, allylic substitution; rhodium-catalyzed conjugate addition of organoboron reagents to α, β-unsaturated compounds, 1, 2-addition of organoboron reagents to imines/carbonyl compounds, intramolecular hydroacylation; and palladium-catalyzed asymmetric allylic alkylation/amination/etherification of allylic esters, as well as Suzuki-coupling reactions.In many cases, the reactions occur with high enantioselectivities, allows for access to a broad range of valuable chiral products.This paper reviews the literatures in this field and summarizes the remarkable progress and advances in the use of various P-olefins as powerful ligands for diverse transition metal-catalyzed asymmetric transformations since 2004.The aim is to offer an overview of the recent achievements in the rational design and development of new hybrid chiral olefin ligands for effective enantioselective catalysis.We hope that the current success of chiral phosphorus-olefin catalysis would provide an exciting opportunity for future exploration of chiral olefin ligands in a wide variety of asymmetric reactions.
  • 加载中
    1. [1]

    2. [2]

      Zeise, W. C. Poggendorff's Ann. Phys. 1827, 9, 632.

    3. [3]

      Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.  doi: 10.1021/ja037367z

    4. [4]

      Fisher, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628.  doi: 10.1021/ja0390707

    5. [5]

    6. [6]

      (a) Maire, P.; Deblon, S.; Breher, F.; Geier, J.; Böhler, C.; Rügger, H.; Schönberg, H.; Grützmacher, H. Chem. Eur. J. 2004, 10, 4198. (b) Thoumazet, C.; Ricard, L.; Grützmacher, H.; Floch, F. P. Chem. Commun. 2005, 41, 1592.

    7. [7]

      Piras, E.; Läng, F.; Rüegger, H.; Stein, D.; Wörle, M.; Grützmacher, H. Chem. Eur. J. 2006, 12, 5849.  doi: 10.1002/(ISSN)1521-3765

    8. [8]

      (a) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 4611. (b) Duan, W.; Iwamura, H.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 2130.

    9. [9]

      Kasák, P.; Arion, V. B.; Widhalm, M. Tetrahedron Asymmetry 2006, 17, 3084.  doi: 10.1016/j.tetasy.2006.11.022

    10. [10]

      (a) Štěpnička, P.; Císařová, I. Inorg. Chem. 2006, 45, 8785. (b) Stemmler, R, T.; Bolm, C. Synlett 2007, 9, 1365. (c) Csizmadiová, J.; Mečiarová, M.; Rakovský, E.; Horváth, B.; Šebesta, R. Eur. J. Org. Chem. 2011, 6110.

    11. [11]

      Liu, Z.; Du, H. Org. Lett. 2010, 12, 3054.  doi: 10.1021/ol101069y

    12. [12]

      (a) Wershofen, S.; Scharf, H.-G. Synthesis 1988, 854. (b) Bell, T. W.; Ciaccio, J. A. J. Org. Chem. 1993, 58, 5153. (c) Mukai, C.; Kim, J. S.; Sonobe, H.; Hanaoka, M. J. Org. Chem. 1999, 64, 6822. (d) Pandey, G.; Kapur, M. Org. Lett. 2002, 4, 3883. (e) Pandey, G.; Kapur, M.; Khan, M. I.; Gaikwad, S. M. Org. Biomol. Chem. 2003, 1, 3321. (f) Horváth, A.; Benner, J.; Bäckvall, J.-E. Eur. J. Org. Chem. 2004, 3240.

    13. [13]

      (a) Cao, Z.; Liu, Y.; Liu, Z.; Feng, X.; Zhuang, M.; Du, H. Org. Lett. 2011, 13, 2164. (b) Cao, Z.; Liu, Z.; Liu, Y.; Du, H. J. Org. Chem. 2011, 76, 6401. (c) Liu, Y.; Cao, Z.; Du, H. J. Org. Chem. 2012, 77, 4479.

    14. [14]

      (a) Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 18066. (b) Antczak, M. I.; Cai, F.; Ready, J. M. Org. Lett. 2011, 13, 184.

    15. [15]

      (a) Ogasawara, M.; Wu, W.-Y.; Arae, S.; Watanabe, S.; Morita, T.; Takahashi, T.; Kamikawa, K. Angew. Chem. Int. Ed. 2012, 51, 2951. (b) Ogasawara, M.; Tseng, Y. Y.; Arae, S.; Morita, T.; Nakaya, T.; Wu, W. Y.; Takahashi, T.; Kamikawa, K. J. Am. Chem. Soc. 2014, 136, 9377. (c) Kamikawa, K.; Tseng, Y.-Y.; Jian, J.-H.; Takahashi, T.; Ogasawara, M. J. Am. Chem. Soc. 2017, 139, 1545.

    16. [16]

      (a) Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Tetrahedron: Asymmetry 1995, 6, 47. (b) Taniguchi, N.; Uemura, M. Tetrahedron 1998, 54, 12775.

    17. [17]

      (a) Ferber, B.; Top, S.; Jaouen, G. J. Organomet. Chem.2004, 689, 4872. The chiral acetal directing group was originally introduced by Kagan for the preparation of planar-chiral ferrocene derivatives, see: (b) Riant, O.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc. 1993, 115, 5835. (c) Riant, O.; Samuel, O.; Flessner, T.; Taudien, S.; Kagan, H. B. J. Org. Chem. 1997, 62, 6733. (d) Geisler, F. M.; Helmchen, G. Synthesis 2006, 2201. (e) Wölfle, H.; Kopacka, H.; Wurst, K.; Ongania, K.-H.; Görtz, H.-H.; Preishuber-Pflügl, P.; Bildstein, B.J. Organomet. Chem. 2006, 691, 1197.

    18. [18]

      Sieber, J. D.; Chennamadhavuni, D.; Fandrick, K. R.; Qu, B.; Han, Z. S.; Savoie, J. Org. Lett. 2014, 16, 5494.  doi: 10.1021/ol5027798

    19. [19]

      Gandi, V. R.; Lu, Y.; Hayashi, T. Tetrahedron:Asymmetry 2015, 26, 679.  doi: 10.1016/j.tetasy.2015.05.004

    20. [20]

      Qiu, X.-L.; Qing, F.-L. J. Org. Chem. 2005, 70, 3826.  doi: 10.1021/jo050057+

    21. [21]

      Yamamoto, K.; Shimizu, T.; Igawa, K.; Tomooka, K.; Hirai, G.; Suemune, H.; Usui, K. Sci. Rep. 2016, 6, 36211.  doi: 10.1038/srep36211

    22. [22]

      Mino, T.; Nishikawa, K.; Asano, M.; Shima, Y.; Ebisawa, T.; Yoshidaa, Y.; Sakamotoa, M. Org. Biomol. Chem. 2016, 14, 7509.  doi: 10.1039/C6OB01354F

    23. [23]

      Shintani, R.; Narui, Y.; Hayashi, S.; Hayashi, T. Chem. Commun. 2011, 47, 6123.  doi: 10.1039/c1cc11823d

    24. [24]

      (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 3139. (b) Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3470. (c) Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 5568. (d) Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 8652. (e) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52, 7532. (f) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 994. (g) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3006.

    25. [25]

      (a) Liu, Z.; Cao, Z.; Du, H. Org. Biomol. Chem. 2011, 9, 5369. (b) Liu, Y.; Du, H. Org. Lett. 2013, 4, 740. (c) Liu, Y.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 125. (d) Li, G.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 5826.

    26. [26]

      Chen, Q.; Li, L.; Zhou, G.; Ma, X.; Zhang, L.; Guo, F.; Luo, Y.; Xia, W. Chem. Asian J. 2016, 11, 1518.  doi: 10.1002/asia.201600143

    27. [27]

      Minuth, T.; Boysen, M. M. K. Org. Lett. 2009, 11, 4212.  doi: 10.1021/ol901579g

    28. [28]

    29. [29]

      (a) Mariz, R.; Brice o, A.; Dorta, R. Organometallics 2008, 27, 6605. (b) Drinkel, E.; Briceño, A.; Dorta, R. Organometallics2010, 29, 2503.

    30. [30]

      Shintani, R.; Duan, W.-L.; Okamoto, K.; Hayashi, T. Tetrahedron:Asymmetry 2005, 16, 3400.  doi: 10.1016/j.tetasy.2005.08.050

    31. [31]

      (a) Schafroth, M. A.; Sarlah, D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276. (b) Jeker, O. F.; Kravina, A. G.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52, 12166.

    32. [32]

      (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science2013, 340, 1065. (b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.

    33. [33]

      Hoffman, T. J.; Carreira, E. M. Angew. Chem. Int. Ed. 2011, 50, 10670.  doi: 10.1002/anie.201104595

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    13. [13]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

Metrics
  • PDF Downloads(48)
  • Abstract views(2572)
  • HTML views(467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return