Citation: Li Jiapeng, Yin Jianhao, Yu Chao, Zhang Wenxiong, Xi Zhenfeng. Direct Transformation of N2 to N-Containing Organic Compounds[J]. Acta Chimica Sinica, ;2017, 75(8): 733-743. doi: 10.6023/A17040170 shu

Direct Transformation of N2 to N-Containing Organic Compounds

  • Corresponding author: Xi Zhenfeng, zfxi@pku.edu.cn
  • Received Date: 20 April 2017
    Available Online: 12 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21690061)the National Natural Science Foundation of China 21690061

Figures(30)

  • As a grand research area closely related to human civilization and living, the activation and transformation of dinitrogen (nitrogen fixation) under mild conditions used to be a central research theme worldwide in the 1970's~1990's. Nitrogen fixation is the process by which atmospheric nitrogen is directly converted to a bioavailable form. This basic chemical reaction process is essential to sustaining all life on this planet. However, due to great challenging of the nature of this research, slow progress and worldwide change of academic culture, the number of researchers engaged in this fundamental research area has been drastically reduced. Nevertheless, there is no doubt that realizing activation and transformation of dinitrogen under mild conditions is a grand scientific problem that people need to solve, required by sustainable development of human society. It is thus one of the most important missions of scientists, especially chemists. Three types of N-containing products can be obtained through direct transformation of dinitrogen. The most popular one is the formation of ammonia NH3 and NxHy. The industrial Haber-Bosch process, which requires harsh reaction conditions such as high temperature and pressure and uses at least 1%~2% of the annual primary energy supply in the world, is still the main method to produce ammonia from molecular dinitrogen and dihydrogen gases. Inspired by the investigation of nitrogenase and the discovery of the first molecular nitrogen complex in 1965, chemists have paid more attention to achieving the reduction of dinitrogen to ammonia with transition metal complexes either as regents or as catalysts. Reports on the other two types of products, the N-E (E=P, Si) bonding compounds, and the N-C bonding compounds, are very rare. Compared with ammonia, nitrogen-containing organic compounds such as amines, amides, imides, amino acids and aza-heterocycles are also high-value products. This review mainly summarizes the progress in the field of direct transformation of molecular nitrogen to nitrogen-containing organic compounds by using transition metal complexes, as well as the elucidation of transformation mechanisms. The N-containing organic compounds thus formed include amines, amides, imides, nitriles, diazenes, azines, carbodiimides, isocyanates and heterocycles. Although some progress has been achieved, examples are still very much limited, efficiency is generally very low. Transition metal complex-catalyzed reaction process is in great demand. Synergetic strategy is considered to be one of the efficient ways to realize transition metal complex-catalyzed direct transformation of molecular nitrogen to nitrogen-containing organic compounds under mild conditions. The formation of N-E (E=P, Si) bonding compounds and the reduction of dinitrogen to ammonia and other partially reduced or protonated products of dinitrogen are not covered here.
  • 加载中
    1. [1]

      Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621.

    2. [2]

    3. [3]

      (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589. (b) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. (c) Hidai, M. Coord. Chem. Rev. 1999, 185, 99. (d) Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 2000, 200, 379. (e) Shaver, M. P.; Fryzuk, M. D. Adv. Synth. Catal. 2003, 345, 1061. (f) Fryzuk, M. D. Chem. Rec. 2003, 3, 2. (g) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385. (h) Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883. (i) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044. (j) Tanabe, Y.; Nishibayashi, Y. Coord. Chem. Rev. 2013, 257, 2551. (k) van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Chem. Soc. Rev. 2014, 43, 5183. (l) Lehnert, N.; Peters, J. C. Inorg. Chem. 2015, 54, 9229. (m) Walter, M. D. Adv. Organomet. Chem. 2016, 65, 261. (n) Bhattacharya, P.; Prokopchuk, D. E.; Mock, M. T. Coord. Chem. Rev. 2017, 334, 67. (o) Burford, R. J.; Yeo, A.; Fryzuk, M. D. Coord. Chem. Rev. 2017, 334, 84.

    4. [4]

      Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965.  doi: 10.1021/cr9500545

    5. [5]

      Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696.  doi: 10.1126/science.1073877

    6. [6]

      Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.  doi: 10.1126/science.1214025

    7. [7]

      Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.  doi: 10.1126/science.1206445

    8. [8]

      Lancaster, K. M.; Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013, 135, 610.  doi: 10.1021/ja309254g

    9. [9]

      Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012, 337, 1672.

    10. [10]

      (a) Chen, Y.; Liu, L.; Peng, Y.; Chen, P.; Luo, Y.; Qu, J. J. Am. Chem. Soc. 2011, 133, 1147. (b) Luo, Y.; Li, Y.; Yu, H.; Zhao, J.; Chen, Y.; Hou, Z.; Qu, J. Organometallics 2012, 31, 335. (c) Li, Y.; Li, Y.; Wang, B.; Luo, Y.; Yang, D.; Tong, P.; Zhao, J.; Luo, L.; Zhou, Y.; Chen, S.; Cheng, F.; Qu, J. Nat. Chem. 2013, 5, 320. (d) Ouyang, Z.; Cheng, J.; Li, L.; Bao, X.; Deng, L. Chem. Eur. J. 2016, 22, 14162.

    11. [11]

      (a) Shima, T.; Hu, S.; Luo, G.; Kang, X.; Luo, Y.; Hou, Z. Science 2013, 340, 1549. (b) MacLeod, K. C.; Vinyard, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 10226. (c) Rittle, J.; McCrory, C. C. L.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13853. (d) Ishida, Y.; Kawaguchi, H. J. Am. Chem. Soc. 2014, 136, 16990. (e) Lee, Y.; Sloane, F. T.; Blondin, G.; Abboud, K. A.; García-Serres, R.; Murray, L. J. Angew. Chem. Int. Ed. 2015, 54, 1499. (f) Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 3498.

    12. [12]

      Nishibayashi, Y. Inorg. Chem. 2015, 54, 9234.  doi: 10.1021/acs.inorgchem.5b00881

    13. [13]

      Khoenkhoen, N.; de Bruin, B.; Reek, J. N. H.; Dzik, W. I. Eur. J. Inorg. Chem. 2015, 2015, 567.

    14. [14]

      Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.

    15. [15]

      Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120.  doi: 10.1038/nchem.906

    16. [16]

      Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.  doi: 10.1038/nature12435

    17. [17]

    18. [18]

      Shiina, K. J. J. Am. Chem. Soc. 1972, 94, 9266.  doi: 10.1021/ja00781a068

    19. [19]

      Komori, K.; Oshita, H.; Mizobe, Y.; Hidai, M. J. Am. Chem. Soc. 1989, 111, 1939.  doi: 10.1021/ja00187a092

    20. [20]

      Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.  doi: 10.1021/ja109181n

    21. [21]

      Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.; Yoshizawa, K.; Nishibayashi, Y. Nat. Commun. 2012, 3, 1254.  doi: 10.1038/ncomms2264

    22. [22]

      Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. Chem. Eur. J. 2015, 21, 8905.  doi: 10.1002/chem.201501088

    23. [23]

      Morello, L.; Yu, P.; Carmichael, C. D.; Patrick, B. O.; Fryzuk, M. D. J. Am. Chem. Soc. 2005, 127, 12796.  doi: 10.1021/ja054467r

    24. [24]

      MacLeod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559.  doi: 10.1038/nchem.1620

    25. [25]

      Volpin, M. E.; Shur, V. B.; Kudryavtsev, R. V.; Prodayko, L. A. Chem. Commun. 1968, 1038.

    26. [26]

      van Tamelen, E. E.; Rudler, H. J. Am. Chem. Soc. 1970, 92, 5253.  doi: 10.1021/ja00720a061

    27. [27]

      Hori, K.; Mori, M. J. Am. Chem. Soc. 1998, 120, 7651.  doi: 10.1021/ja981465g

    28. [28]

      Mori, M.; Uozumi, Y.; Shibasaki, M. Tetrahedron Lett. 1987, 28, 6187.  doi: 10.1016/S0040-4039(00)61842-7

    29. [29]

      Ueda, K.; Sato, Y.; Mori, M. J. Am. Chem. Soc. 2000, 122, 10722.  doi: 10.1021/ja002707r

    30. [30]

      Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Nat. Chem. 2010, 2, 30.  doi: 10.1038/nchem.477

    31. [31]

      Curley, J. J.; Sceats, E. L.; Cummins, C. C. J. Am. Chem. Soc. 2006, 128, 14036.  doi: 10.1021/ja066090a

    32. [32]

      Guru, M. M.; Shima, T.; Hou, Z. Angew. Chem. Int. Ed. 2016, 55, 12316.  doi: 10.1002/anie.201607426

    33. [33]

      Semproni, S. P.; Margulieux, G. W.; Chirik, P. J. Organometallics 2012, 31, 6278.  doi: 10.1021/om3005542

    34. [34]

      Klopsch, I.; Kinauer, M.; Finger, M.; Würtele, C.; Schneider, S. Angew. Chem. Int. Ed. 2016, 55, 4786.  doi: 10.1002/anie.201600790

    35. [35]

      Sellmann, D.; Weiss, W. Angew. Chem. Int. Ed. 1978, 17, 269.  doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Watakabe, A.; Takahashi, T.; Jin, D. M.; Yokotake, I.; Uchida, Y.; Hidai, M. J. Organomet. Chem. 1983, 254, 75.  doi: 10.1016/0022-328X(83)85119-5

    37. [37]

      Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Angew. Chem. Int. Ed. 2007, 46, 2858.  doi: 10.1002/(ISSN)1521-3773

    38. [38]

      Knobloch, D. J.; Toomey, H. E.; Chirik, P. J. J. Am. Chem. Soc. 2008, 130, 4248.  doi: 10.1021/ja8008506

    39. [39]

      Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 11373.  doi: 10.1021/ja405477m

    40. [40]

      Keane, A. J.; Farrell, W. S.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. Angew. Chem. Int. Ed. 2015, 54, 10220.  doi: 10.1002/anie.201502293

    41. [41]

      Seino, H.; Ishii, Y.; Sasagawa, T.; Hidai, M. J. Am. Chem. Soc. 1995, 117, 12181.  doi: 10.1021/ja00154a019

    42. [42]

      Hori, M.; Mori, M. J. Org. Chem. 1995, 60, 1480.  doi: 10.1021/jo00111a001

    43. [43]

      Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924.  doi: 10.1021/jo00024a040

    44. [44]

      Mori, M.; Hori, K.; Akashi, M.; Hori, M.; Sato, Y.; Nishida, M. Angew. Chem. Int. Ed. 1998, 37, 636.  doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Pickett, C. J.; Leigh, G. J. Chem. Commun. 1981, 1033.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    16. [16]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    17. [17]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(103)
  • Abstract views(4825)
  • HTML views(1375)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return