Citation: Hu Chengyu, Yan Wenfu, Xu Ruren. Phase Transition Behavior of Zeolite Y under Hydrothermal Conditions[J]. Acta Chimica Sinica, ;2017, 75(7): 679-685. doi: 10.6023/A17040169 shu

Phase Transition Behavior of Zeolite Y under Hydrothermal Conditions

  • Corresponding author: Yan Wenfu, yanw@jlu.edu.cn
  • Received Date: 19 April 2017

    Fund Project: he National Key Research and Development Program of China 2016YFB0701100the National Natural Science Foundation of China 21320102001the National Natural Science Foundation of China 21621001the National Natural Science Foundation of China 21571075the Programme of Introducing Talents of Discipline to Universities B17020

Figures(7)

  • The phase transition behavior of zeolite Y (HY and NaY) to zeolite MER in the KOH solution under hydrothermal conditions was systematically investigated.Zeolite MER has four types of 8-membered ring channels (3.1 Å×3.5 Å, 2.7 Å×3.6 Å, 3.4 Å×5.1 Å, 3.3 Å×3.3 Å) and important potential applications in small molecule catalysis and separation.Seven to ten days are needed to synthesize highly crystalline zeolite MER with traditional hydrothermal synthesis.With phase transition of zeolite Y in the KOH solution under hydrothermal treatment, highly crystalline zeolite MER can be obtained within two days.The synthetic system contains zeolite Y (HY and NaY), KOH, and water, where KOH/SiO2 and H2O/SiO2 are changeable.Hydrothermally treating the equivalent amorphous aluminosilicate gel resulted in the mixture of zeolite MER and zeolite LTL (for HY) or zeolite CHA (for NaY) with low degree of crystallinity.Phase transition of HY can be conducted at either 100 or 150℃, whereas that of NaY can only be conducted at 150℃.As a common process for the hydrothermal phase transition of zeolite Y to zeolite MER in the absence of organic templates, potassium hydroxide was first dissolved into deionized H2O.After stirring at room temperature for 5 min, zeolite Y (HY or NaY) as aluminum and silicon sources was introduced into the potassium hydroxide solution.After further stirring for 1 h, the mixture was transferred into an autoclave for crystallization at elevated temperature (i.e.100 or 150℃).After filtrating, washing with deionized water and drying, zeolite products were obtained.The zeolite products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and inductively coupled plasma emission spectrometer (ICP).KOH/SiO2 and H2O/SiO2 have significant influence on the phase transition behavior of zeolite Y.Highly crystalline zeolite MER can only be obtained with the optimized KOH/SiO2 and H2O/SiO2.With this method, the synthesis period of zeolite MER is greatly reduced, which might be applied to the synthesis of other industrially important zeolites in a shortened time.
  • 加载中
    1. [1]

      Xu, R. R.; Pang, W. Q.; Yu, J. H.; Huo, Q. S.; Chen, J. S. Chemistry of Zeolites and Related Porous Materials:Synthesis and Structure, John Wiley & Sons, Ltd, Singapore, 2010.

    2. [2]

      Kulprathipanja, S. Zeolites in Industrial Separation and Ca-talysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

    3. [3]

      Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis——Synthesis, Reactions and Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

    4. [4]

      Vermeiren, W.; Gilson, J. P. Top. Catal. 2009, 52, 1131.  doi: 10.1007/s11244-009-9271-8

    5. [5]

      Chester, A. W.; Derouane, E. G. Zeolite Characterization and Catalysis: A Tutorial, Springer, New York, 2009.

    6. [6]

      Wu, X.; Hu, C.; Zhao, G. Q.; Yuan, Y.; Zhu, Z. R. Chin. J. Chem. 2016, 34, 1291.  doi: 10.1002/cjoc.v34.12

    7. [7]

      Li, Y. C.; Wang, H.; Dong, M.; Li, J. F.; Wang, G. F.; Qin, Z. F.; Fan, W. B.; Wang, J. G. Acta Chim. Sinica 2016, 74, 529.
       

    8. [8]

      Liang, D.; Li, Z. Q.; Li, P.; Chen, Y. H.; Zhang, S. M.; Wang, Y. G. Chin. J. Chem. 2015, 33, 1389.  doi: 10.1002/cjoc.201500540

    9. [9]

      Moliner, M.; Martínez, C.; Corma, A. Chem. Mater. 2014, 26, 246.  doi: 10.1021/cm4015095

    10. [10]

      Corma, A.; Davis, M. E. ChemPhysChem 2004, 5, 304.  doi: 10.1002/(ISSN)1439-7641

    11. [11]

      Sun, M. L.; Zhao, T. B.; Wang, J.; Ma, Z. F.; Li, F. Y. Chin. J. Chem. 2015, 33, 1057.  doi: 10.1002/cjoc.v33.9

    12. [12]

      Čejka, J.; Centi, G.; Perez-Pariente, J.; Roth, W. J. Catal. Today 2012, 179, 2.  doi: 10.1016/j.cattod.2011.10.006

    13. [13]

      Morris, R. E. Top. Catal. 2010, 53, 1291.  doi: 10.1007/s11244-010-9586-5

    14. [14]

      Coronas, J. Chem. Eng. J. 2010, 156, 236.  doi: 10.1016/j.cej.2009.11.006

    15. [15]

      Meng, X. J.; Xiao, F. S. Chem. Rev. 2014, 114, 1521.  doi: 10.1021/cr4001513

    16. [16]

      Cundy, C. S.; Cox, P. A. Microporous Mesoporous Mater. 2005, 82, 1.  doi: 10.1016/j.micromeso.2005.02.016

    17. [17]

      Lee, H.; Zones, S. I.; Davis, M. E. J. Phys. Chem. B 2005, 109, 2187.  doi: 10.1021/jp048908p

    18. [18]

      Herr, G. T. J. Phys. Chem. 1966, 70, 1047.  doi: 10.1021/j100876a015

    19. [19]

      Ji, Y. Y.; Wang, Y. Q.; Xie, B.; Xiao, F. S. Comments Inorg. Chem. 2016, 36, 1.  doi: 10.1080/02603594.2015.1031375

    20. [20]

      Mou, Q.; Li, N.; Xiang, S. H. Microporous Mesoporous Mater. 2015, 212, 73.  doi: 10.1016/j.micromeso.2015.03.023

    21. [21]

      Imai, H.; Hayashida, N.; Yokoi, T.; Tatsumi, T. Microporous Mesoporous Mater. 2014, 196, 341.  doi: 10.1016/j.micromeso.2014.05.043

    22. [22]

      Cheng, X. W.; Mao, J. J.; Lv, X. C.; Hua, T.; Cheng, X. P.; Long, Y. C.; Tang, Y. J. Mater. Chem. A 2014, 2, 1247.  doi: 10.1039/C3TA14235C

    23. [23]

      Xie, B.; Song, J. W.; Ren, L. M.; Ji, Y. Y.; Li, J. X.; Xiao, F. S. Chem. Mater. 2008, 20, 4533.  doi: 10.1021/cm801167e

    24. [24]

      Bouizi, Y.; Paillaud, J. L.; Simon, L.; Valtchev, V. Chem. Mater. 2007, 19, 652.  doi: 10.1021/cm063019v

    25. [25]

      Kubota, Y.; Maekawa, H.; Miyata, S.; Tatsumi, T.; Sugi, Y. Mi-croporous Mesoporous Mater. 2007, 101, 115.  doi: 10.1016/j.micromeso.2006.11.037

    26. [26]

      Maekawa, H.; Kubota, Y.; Sugi, Y. Chem. Lett. 2004, 33, 1126.  doi: 10.1246/cl.2004.1126

    27. [27]

      Zones, S. I.; Nakagawa, Y. Microporous Mater. 1994, 2, 557.  doi: 10.1016/0927-6513(94)E0027-R

    28. [28]

      Itabashi, K.; Kamimura, Y.; Iyoki, K.; Shimojima, A.; Okubo, T. J. Am. Chem. Soc. 2012, 134, 11542.  doi: 10.1021/ja3022335

    29. [29]

      Kamimura, Y.; Iyoki, K.; Elangovan, S. P.; Itabashi, K.; Shimojima, A.; Okubo, T. Microporous Mesoporous Mater. 2012, 163, 282.  doi: 10.1016/j.micromeso.2012.07.014

    30. [30]

      Zhang, H. Y.; Yang, C. G.; Meng, X. J.; Xiao, F. S. Acta Chim. Sinica 2012, 70, 2387.
       

    31. [31]

      Zhou, R. F.; Li, Y. Q.; Liu, B.; Hu, N.; Chen, X. S.; Kita, H. Mi-croporous Mesoporous Mater. 2013, 179, 128.  doi: 10.1016/j.micromeso.2013.06.003

    32. [32]

      Yu, Q.; Zhang, Q.; Liu, J.; Li, C.; Cui, Q. CrystEngComm 2013, 15, 7680.  doi: 10.1039/c3ce40784e

    33. [33]

      Iyoki, K.; Takase, M.; Itabashi, K.; Muraoka, K.; Chaikittisilp, W.; Okubo, T. Microporous Mesoporous Mater. 2015, 215, 191.  doi: 10.1016/j.micromeso.2015.05.042

    34. [34]

      Zhang, Z. Z.; Qin, B.; Zhang, X. W.; Ling, F. X.; Sun, W. F.; Fang, X. C. J. Porous Mater. 2013, 20, 515.  doi: 10.1007/s10934-012-9623-9

    35. [35]

      Nagase, T.; Kiyozumi, Y.; Nemoto, Y.; Hirano, N.; Hasegawa, Y.; Ikeda, T.; Inoue, T.; Nishide, T.; Mizukami, F. Microporous Mesoporous Mater. 2009, 126, 107.  doi: 10.1016/j.micromeso.2009.05.026

    36. [36]

      Pan, H. H.; Pan, Q. X.; Zhao, Y. S.; Luo, Y. B.; Shu, X. T.; He, M. Y. Ind. Eng. Chem. Res. 2010, 49, 7294.  doi: 10.1021/ie100191a

    37. [37]

      Xu, Q. H.; Gong, Y. J.; Xu, W. J.; Xu, J.; Deng, F.; Dou, T. J. Colloid Interface Sci. 2011, 358, 252.  doi: 10.1016/j.jcis.2011.03.027

    38. [38]

      Wang, L.; Tian, P.; Yuan, Y.; Yang, M.; Fan, D.; Zhou, H.; Zhu, W.; Xu, S.; Liu, Z. Microporous Mesoporous Mater. 2014, 196, 89.  doi: 10.1016/j.micromeso.2014.05.001

    39. [39]

      Yu, Q. J.; Li, C. Y.; Tang, X. L.; Yi, H. H. J. Porous Mater. 2016, 23, 273.  doi: 10.1007/s10934-015-0079-6

    40. [40]

      Martin, N.; Moliner, M.; Corma, A. Chem. Commun. 2015, 51, 9965.  doi: 10.1039/C5CC02670A

    41. [41]

      Nakazawa, N.; Inagaki, S.; Kubota, Y. Chem. Lett. 2016, 45, 919.  doi: 10.1246/cl.160370

    42. [42]

      Jun, J. W.; Khan, N. A.; Seo, P. W.; Kim, C. U.; Kim, H. J.; Jhung, S. H. Chem. Eng. J. 2016, 303, 667.  doi: 10.1016/j.cej.2016.06.043

    43. [43]

      Itakura, M.; Oumi, Y.; Sadakane, M.; Sano, T. Mater. Res. Bull. 2010, 45, 646.  doi: 10.1016/j.materresbull.2010.01.007

    44. [44]

      Jon, H.; Takahashi, S.; Sasaki, H.; Oumi, Y.; Sano, T. Mi-croporous Mesoporous Mater. 2008, 113, 56.  doi: 10.1016/j.micromeso.2007.11.003

    45. [45]

      Inagaki, S.; Tsuboi, Y.; Nishita, Y.; Syahylah, T.; Wakihara, T.; Kubota, Y. Chem. Eur. J. 2013, 19, 7780.  doi: 10.1002/chem.v19.24

    46. [46]

      Jon, H.; Ikawa, N.; Oumi, Y.; Sano, T. Chem. Mater. 2008, 20, 4135.  doi: 10.1021/cm703676y

    47. [47]

      Jon, H.; Nakahata, K.; Lu, B. W.; Oumi, Y.; Sano, T. Microporous Mesoporous Mater. 2006, 96, 72.  doi: 10.1016/j.micromeso.2006.06.024

    48. [48]

      Sasaki, H.; Jon, H.; Itakura, M.; Inoue, T.; Ikeda, T.; Oumi, Y.; Sano, T. J. Porous Mater. 2009, 16, 465.  doi: 10.1007/s10934-008-9220-0

    49. [49]

      Zones, S. I.; Nakagawa, Y. Stud. Surf. Sci. Catal. 1995, 97, 45.  doi: 10.1016/S0167-2991(06)81871-9

    50. [50]

      Goel, S.; Zones, S. I.; Iglesia, E. Chem. Mater. 2015, 27, 2056.  doi: 10.1021/cm504510f

    51. [51]

      Van Tendeloo, L.; Gobechiya, E.; Breynaert, E.; Martens, J. A.; Kirschhock, C. E. Chem. Commun. 2013, 49, 11737.  doi: 10.1039/c3cc47292b

    52. [52]

      Takata, T.; Tsunoji, N.; Takamitsu, Y.; Sadakane, M.; Sano, T. Microporous Mesoporous Mater. 2016, 225, 524.  doi: 10.1016/j.micromeso.2016.01.045

    53. [53]

      Honda, K.; Yashiki, A.; Itakura, M.; Ide, Y.; Sadakane, M.; Sano, T. Microporous Mesoporous Mater. 2011, 142, 161.  doi: 10.1016/j.micromeso.2010.11.031

    54. [54]

      Honda, K.; Yashiki, A.; Sadakane, M.; Sano, T. Microporous Mesoporous Mater. 2014, 196, 254.  doi: 10.1016/j.micromeso.2014.05.028

    55. [55]

      Koningsveld, H. V. Compendium of Zeolite Framework Types Building Schemes and Type Characteristics, Elsevier, Amsterdam, 2007.

    56. [56]

      Kim, S. H.; Kim, S. D.; Kim, Y. C.; Kim, C. S.; Hong, S. B. Mi-croporous Mesoporous Mater. 2001, 42, 121.  doi: 10.1016/S1387-1811(00)00315-2

    57. [57]

      Hasegawa, Y.; Nagase, T.; Kiyozumi, Y.; Mizukami, F. Sep. Purif. Technol. 2010, 73, 25.  doi: 10.1016/j.seppur.2009.07.028

    58. [58]

      Nagase, T.; Kiyozumi, Y.; Hasegawa, Y.; Inoue, T.; Ikeda, T.; Mizukami, F. Chem. Lett. 2007, 36, 594.  doi: 10.1246/cl.2007.594

    59. [59]

      Skofteland, B. M.; Ellestad, O. H.; Lillerud, K. P. Microporous Mesoporous Mater. 2001, 43, 61.  doi: 10.1016/S1387-1811(00)00347-4

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(18)
  • Abstract views(2379)
  • HTML views(580)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return