Citation: Yan Wen-Guang, Wang Pan, Wang Lijia, Sun Xiu-Li, Tang Yong. Copper Catalyzed[3+2] Annulation of Indoles with 1, 1, 2, 2-Tetrasubstituted Donor-Acceptor Cyclopropanes[J]. Acta Chimica Sinica, ;2017, 75(8): 783-787. doi: 10.6023/A17040146 shu

Copper Catalyzed[3+2] Annulation of Indoles with 1, 1, 2, 2-Tetrasubstituted Donor-Acceptor Cyclopropanes

  • Corresponding author: Sun Xiu-Li, xlsun@sioc.ac.cn Tang Yong, tangy@sioc.ac.cn
  • Received Date: 7 April 2017
    Available Online: 12 August 2017

    Fund Project: the Youth Innovation Promotion Association CAS 2017301the National Basic Research Program of China 2015CB856600the Natural Science Foundation of Shanghai 17ZR1436900the National Natural Science Foundation of China 21421091Project supported by the National Natural Science Foundation of China (Nos.21421091 and 21432011), the National Basic Research Program of China (973 Program)(No.2015CB856600), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB20000000), the Youth Innovation Promotion Association CAS (No.2017301) and the Natural Science Foundation of Shanghai (No.17ZR1436900)the National Natural Science Foundation of China 21432011the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(6)

  • D-A cyclopropanes have emerged as versatile synthons for construction of carbocycles and heterocycles via a [3 +2] annulation reactions, and have been used in the total synthesis of natural products. Recently, it has been witnessed tremendous progress within the area of transformation of 2-monosubstituted-cyclopropane-1, 1-diesters. However, cyclopropane-1, 1-diesters with full substitution at the donor site have not been well explored. C2, C3-fused indolines are widely existed in a plenty of natural products and biologically active compounds, and have been the synthetic targets for decades. Among the various approaches to access these important structural motifs, the cyclopentannulation of indoles with Donor-Acceptor (D-A) cyclopropanes, represents a concise, economical and effective method. Previously, we have developed a highly diastereo-and enantioselective BOX/Cu(Ⅱ) catalyzed C2, C3-cyclopentannulation of indoles with 2-monosubstituted-cyclopropane-1, 1-diesters, a facile access to a series of enantioenriched cyclopenta-fused indoline products. As our further studies, Lewis acid catalyzed [3+2] annulation of indoles with 1, 1, 2, 2-tetrasubstituted D-A cyclopropanes was reported in this paper. This annulation method of C3-substituted indoles with quaternary donor site D-A cyclopropanes yielded C2, C3-fused indolines, bearing three quaternary stereocentres on the newly built cyclopentane ring without the formation of the common Friedel-Crafts byproducts. The ester groups on cyclopropane, ligand, and protection group of indole have great influence on both yield and dr selectivity. Thus, the reaction between indole (1b, -NMe) and cyclopropane 2 (CO2R2=CO2CH2CF3) can give the highest yield and the best dr in the presence of 10 mol% BOX/Cu(SbF6)2 in DCM, which is prepared in situ. Under the optimal conditions, the[3+2] annulation reacts smoothly with a wide range of substituted indole derivatives and D-A cyclopropanes, giving the desired products in up to 91% yield with up to >20/1 diastereoselectivity. The relative configuration of the products is determined by X-ray crystallographic analysis of the major diastereoisomer of 3b. The general experimental procedure for the [3+2] annulations is shown below:A mixture of CuBr2(0.02 mmol), AgSbF6 (0.04 mmol), and bisoxazoline (L, 0.024 mmol) in DCM (1 mL) was stirred at room temperature for 3 h under the atmosphere of nitrogen. Then, the mixture was cooled to 0℃ for 20 min and the cyclopropane 1(0.2 mmol) and the indole derivative 2 (0.4 mmol) in 1 mL DCM were added to the mixture of catalyst via a syringe. After the reaction was complete (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (20 mm) of silica gel (100~200 mesh) and eluted with DCM (approx 100 mL). The filtrate was concentrated under reduced pressure. After the determination of the diatereoselectivity by 1H NMR, the residue was purified by flash chromatography to afford the product 3.
  • 加载中
    1. [1]

      For reviews on the transformations of D-A cyclopropanes, see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151; (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321; (c) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117; (d) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051; (e) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804; (f) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912; (g) Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260; (h) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504; (i) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655. (j) Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288.

    2. [2]

      For selected examples, see: (a) Meyers, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42, 694; (b) Carson, C. A.; Kerr, M. A. Angew. Chem., Int. Ed. 2006, 45, 6560; (c) Young, I. S.; Kerr, M. A. J. Am. Soc. Chem. 2007, 129, 1465; (d) Leduc, A. B.; Kerr, M. A. Angew. Chem., Int. Ed. 2008, 47, 7945; (e) Morales, C. L.; Pagenkopf, B. L. Org. Lett. 2008, 10, 157. (f) Campbell, M. J.; Johnson, J. S. J. Am. Soc. Chem. 2009, 131, 10370; (g) Karadeolian, A.; Kerr, M. A. Angew. Chem., Int. Ed. 2010, 49, 1133; (h) Han, Y.; Fu, Q.; Tang, W.; Yan, C. Chin. J. Chem. 2012, 30, 1867.

    3. [3]

      For recent selected examples, see: (a) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838; (b) Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann, M. Org. Lett. 2013, 15, 2262; (c) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758; (d) Ryabchuk, P.; Edwards, A.; Gerasimchuk, N.; Rubina, M.; Rubin, M. Org. Lett. 2013, 15, 6010; (e) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15, 2558; (f) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Soc. Chem. 2013, 135, 7851; (g) Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.; Sun, X.-L.; Li, Y.-X.; Wang, L.-J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452; (h) Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964; (i) de Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Soc. Chem. 2014, 136, 6239; (j) Garve, L. K. B.; Barkawitz, P.; Jones, P. G.; Werz, D. B. Org. Lett. 2014, 16, 5804; (k) Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702; (l) Lin, S.; Li, L.; Liang, F.; Liu, Q. Chem. Commun. 2014, 50, 10491; (m) Novikov, R. A.; Tarasova, A. V.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem., Int. Ed. 2014, 53, 3187; (n) Talukdar, R.; Tiwari, D. P.; Saha, A.; Ghorai, M. K. Org. Lett. 2014, 16, 3954; (o) Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896; (p) Kang, Q.-K.; Wang, L.; Zheng, Z.-B; Li, J.-F.; Tang, Y. Chin. J. Chem. 2014, 32, 669; (q) Liu, H.; Zheng, C.; You, S.-L. Chin. J. Chem. 2014, 32, 709; (r) Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098; (s) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.; Trushkov, I. V.; Melnikov, M. Y. Org. Lett. 2015, 17, 770; (t) Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2015, 54, 227; (u) Xu, H.; Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y. J. Am. Soc. Chem. 2015, 137, 8006; (v) Wang, L.-N.; Cui, Q.; Yu, Z.-X. J. Org. Chem. 2016, 81, 10165; (w) Bose, S.; Yang, J.; Yu, Z.-X. J. Org. Chem. 2016, 81, 6757; (x) Liu, C.-H.; Yu, Z.-X. Org. Biomol. Chem. 2016, 14, 5945; (y) Liu, C.-H.; Zhuang, Z.; Bose, S.; Yu, Z.-X. Tetrahedron 2016, 72, 2752.

    4. [4]

      For examples on transformations of 1, 1, 2, 2-tetrasubstituted Donor-Acceptor Cyclopropanes, see: (a) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764; (b) Carson, C. A.; Kerr, M. A. Org. Lett. 2009, 11, 777; (c) Sherry, B. D.; Furstner, A. Chem. Commun. 2009, 7116; (d) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2010, 49, 3215; (e) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996; (f) Yu, Q.; Ma, S. Chem. Commun. 2012, 48, 11784; (g) Wenz, D. R.; Read de Alaniz, J. Org. Lett. 2013, 15, 3250; (h) Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032; (i) Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626; (j) Shiba, T.; Kuroda, D.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2005.

    5. [5]

      (a) Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed., Wiley, New York, 2002; (b) Fattorusso, E.; Taglialatela Scafati, O. Modern Alkaloids, Wiley-VCH, Weinheim, Germany, 2008.

    6. [6]

      For selected annulations of indoles with cyclopropanes, see: (a) Harrington, P.; Kerr, M. A. Tetrahedron Lett. 1997, 38, 5949; (b) Kerr, M. A.; Keddy, R. G. Tetrahedron Lett. 1999, 40, 5671; (c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704; (d) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. J. Am. Soc. Chem. 2007, 129, 9631.

    7. [7]

      For selected examples of using L as ligand: (a) Yasuhara, S.; Sasa, M.; Kusakabe, T.; Takayama, H.; Kimura, M.; Mochida, T.; Kato, K. Angew. Chem., Int. Ed. 2011, 50, 3912; (b) Zhou, J.-L.; Liang, Y.; Deng, C.; Zhou, H.; Wang, Z.; Sun, X.-L.; Zheng, J.-C.; Yu, Z.-X.; Tang, Y. Angew. Chem., Int. Ed. 2011, 50, 7874; (c) Karyakarte, S. D.; Smith, T. P.; Chemler, S. R. J. Org. Chem. 2012, 77, 7755; (d) Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149; (e) Qu, J.-P.; Liang, Y.; Xu, H.; Sun, X.-L.; Yu, Z.-X.; Tang, Y. Chem.-Eur. J. 2012, 18, 2196; (f) Del Bel, M.; Rovira, A.; Guerrero, C. A. J. Am. Chem. Soc. 2013, 135, 12188.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    16. [16]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    17. [17]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    18. [18]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    19. [19]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(9)
  • Abstract views(2261)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return