Citation: Yan Wen-Guang, Wang Pan, Wang Lijia, Sun Xiu-Li, Tang Yong. Copper Catalyzed[3+2] Annulation of Indoles with 1, 1, 2, 2-Tetrasubstituted Donor-Acceptor Cyclopropanes[J]. Acta Chimica Sinica, ;2017, 75(8): 783-787. doi: 10.6023/A17040146 shu

Copper Catalyzed[3+2] Annulation of Indoles with 1, 1, 2, 2-Tetrasubstituted Donor-Acceptor Cyclopropanes

  • Corresponding author: Sun Xiu-Li, xlsun@sioc.ac.cn Tang Yong, tangy@sioc.ac.cn
  • Received Date: 7 April 2017
    Available Online: 12 August 2017

    Fund Project: the Youth Innovation Promotion Association CAS 2017301the National Basic Research Program of China 2015CB856600the Natural Science Foundation of Shanghai 17ZR1436900the National Natural Science Foundation of China 21421091Project supported by the National Natural Science Foundation of China (Nos.21421091 and 21432011), the National Basic Research Program of China (973 Program)(No.2015CB856600), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB20000000), the Youth Innovation Promotion Association CAS (No.2017301) and the Natural Science Foundation of Shanghai (No.17ZR1436900)the National Natural Science Foundation of China 21432011the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(6)

  • D-A cyclopropanes have emerged as versatile synthons for construction of carbocycles and heterocycles via a [3 +2] annulation reactions, and have been used in the total synthesis of natural products. Recently, it has been witnessed tremendous progress within the area of transformation of 2-monosubstituted-cyclopropane-1, 1-diesters. However, cyclopropane-1, 1-diesters with full substitution at the donor site have not been well explored. C2, C3-fused indolines are widely existed in a plenty of natural products and biologically active compounds, and have been the synthetic targets for decades. Among the various approaches to access these important structural motifs, the cyclopentannulation of indoles with Donor-Acceptor (D-A) cyclopropanes, represents a concise, economical and effective method. Previously, we have developed a highly diastereo-and enantioselective BOX/Cu(Ⅱ) catalyzed C2, C3-cyclopentannulation of indoles with 2-monosubstituted-cyclopropane-1, 1-diesters, a facile access to a series of enantioenriched cyclopenta-fused indoline products. As our further studies, Lewis acid catalyzed [3+2] annulation of indoles with 1, 1, 2, 2-tetrasubstituted D-A cyclopropanes was reported in this paper. This annulation method of C3-substituted indoles with quaternary donor site D-A cyclopropanes yielded C2, C3-fused indolines, bearing three quaternary stereocentres on the newly built cyclopentane ring without the formation of the common Friedel-Crafts byproducts. The ester groups on cyclopropane, ligand, and protection group of indole have great influence on both yield and dr selectivity. Thus, the reaction between indole (1b, -NMe) and cyclopropane 2 (CO2R2=CO2CH2CF3) can give the highest yield and the best dr in the presence of 10 mol% BOX/Cu(SbF6)2 in DCM, which is prepared in situ. Under the optimal conditions, the[3+2] annulation reacts smoothly with a wide range of substituted indole derivatives and D-A cyclopropanes, giving the desired products in up to 91% yield with up to >20/1 diastereoselectivity. The relative configuration of the products is determined by X-ray crystallographic analysis of the major diastereoisomer of 3b. The general experimental procedure for the [3+2] annulations is shown below:A mixture of CuBr2(0.02 mmol), AgSbF6 (0.04 mmol), and bisoxazoline (L, 0.024 mmol) in DCM (1 mL) was stirred at room temperature for 3 h under the atmosphere of nitrogen. Then, the mixture was cooled to 0℃ for 20 min and the cyclopropane 1(0.2 mmol) and the indole derivative 2 (0.4 mmol) in 1 mL DCM were added to the mixture of catalyst via a syringe. After the reaction was complete (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (20 mm) of silica gel (100~200 mesh) and eluted with DCM (approx 100 mL). The filtrate was concentrated under reduced pressure. After the determination of the diatereoselectivity by 1H NMR, the residue was purified by flash chromatography to afford the product 3.
  • 加载中
    1. [1]

      For reviews on the transformations of D-A cyclopropanes, see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151; (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321; (c) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117; (d) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051; (e) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804; (f) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912; (g) Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260; (h) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504; (i) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655. (j) Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288.

    2. [2]

      For selected examples, see: (a) Meyers, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2003, 42, 694; (b) Carson, C. A.; Kerr, M. A. Angew. Chem., Int. Ed. 2006, 45, 6560; (c) Young, I. S.; Kerr, M. A. J. Am. Soc. Chem. 2007, 129, 1465; (d) Leduc, A. B.; Kerr, M. A. Angew. Chem., Int. Ed. 2008, 47, 7945; (e) Morales, C. L.; Pagenkopf, B. L. Org. Lett. 2008, 10, 157. (f) Campbell, M. J.; Johnson, J. S. J. Am. Soc. Chem. 2009, 131, 10370; (g) Karadeolian, A.; Kerr, M. A. Angew. Chem., Int. Ed. 2010, 49, 1133; (h) Han, Y.; Fu, Q.; Tang, W.; Yan, C. Chin. J. Chem. 2012, 30, 1867.

    3. [3]

      For recent selected examples, see: (a) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838; (b) Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann, M. Org. Lett. 2013, 15, 2262; (c) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758; (d) Ryabchuk, P.; Edwards, A.; Gerasimchuk, N.; Rubina, M.; Rubin, M. Org. Lett. 2013, 15, 6010; (e) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15, 2558; (f) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Soc. Chem. 2013, 135, 7851; (g) Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.; Sun, X.-L.; Li, Y.-X.; Wang, L.-J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452; (h) Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2014, 53, 5964; (i) de Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. J. Am. Soc. Chem. 2014, 136, 6239; (j) Garve, L. K. B.; Barkawitz, P.; Jones, P. G.; Werz, D. B. Org. Lett. 2014, 16, 5804; (k) Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702; (l) Lin, S.; Li, L.; Liang, F.; Liu, Q. Chem. Commun. 2014, 50, 10491; (m) Novikov, R. A.; Tarasova, A. V.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem., Int. Ed. 2014, 53, 3187; (n) Talukdar, R.; Tiwari, D. P.; Saha, A.; Ghorai, M. K. Org. Lett. 2014, 16, 3954; (o) Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896; (p) Kang, Q.-K.; Wang, L.; Zheng, Z.-B; Li, J.-F.; Tang, Y. Chin. J. Chem. 2014, 32, 669; (q) Liu, H.; Zheng, C.; You, S.-L. Chin. J. Chem. 2014, 32, 709; (r) Chen, H.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098; (s) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.; Trushkov, I. V.; Melnikov, M. Y. Org. Lett. 2015, 17, 770; (t) Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2015, 54, 227; (u) Xu, H.; Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y. J. Am. Soc. Chem. 2015, 137, 8006; (v) Wang, L.-N.; Cui, Q.; Yu, Z.-X. J. Org. Chem. 2016, 81, 10165; (w) Bose, S.; Yang, J.; Yu, Z.-X. J. Org. Chem. 2016, 81, 6757; (x) Liu, C.-H.; Yu, Z.-X. Org. Biomol. Chem. 2016, 14, 5945; (y) Liu, C.-H.; Zhuang, Z.; Bose, S.; Yu, Z.-X. Tetrahedron 2016, 72, 2752.

    4. [4]

      For examples on transformations of 1, 1, 2, 2-tetrasubstituted Donor-Acceptor Cyclopropanes, see: (a) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764; (b) Carson, C. A.; Kerr, M. A. Org. Lett. 2009, 11, 777; (c) Sherry, B. D.; Furstner, A. Chem. Commun. 2009, 7116; (d) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2010, 49, 3215; (e) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996; (f) Yu, Q.; Ma, S. Chem. Commun. 2012, 48, 11784; (g) Wenz, D. R.; Read de Alaniz, J. Org. Lett. 2013, 15, 3250; (h) Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032; (i) Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626; (j) Shiba, T.; Kuroda, D.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2005.

    5. [5]

      (a) Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed., Wiley, New York, 2002; (b) Fattorusso, E.; Taglialatela Scafati, O. Modern Alkaloids, Wiley-VCH, Weinheim, Germany, 2008.

    6. [6]

      For selected annulations of indoles with cyclopropanes, see: (a) Harrington, P.; Kerr, M. A. Tetrahedron Lett. 1997, 38, 5949; (b) Kerr, M. A.; Keddy, R. G. Tetrahedron Lett. 1999, 40, 5671; (c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704; (d) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. J. Am. Soc. Chem. 2007, 129, 9631.

    7. [7]

      For selected examples of using L as ligand: (a) Yasuhara, S.; Sasa, M.; Kusakabe, T.; Takayama, H.; Kimura, M.; Mochida, T.; Kato, K. Angew. Chem., Int. Ed. 2011, 50, 3912; (b) Zhou, J.-L.; Liang, Y.; Deng, C.; Zhou, H.; Wang, Z.; Sun, X.-L.; Zheng, J.-C.; Yu, Z.-X.; Tang, Y. Angew. Chem., Int. Ed. 2011, 50, 7874; (c) Karyakarte, S. D.; Smith, T. P.; Chemler, S. R. J. Org. Chem. 2012, 77, 7755; (d) Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149; (e) Qu, J.-P.; Liang, Y.; Xu, H.; Sun, X.-L.; Yu, Z.-X.; Tang, Y. Chem.-Eur. J. 2012, 18, 2196; (f) Del Bel, M.; Rovira, A.; Guerrero, C. A. J. Am. Chem. Soc. 2013, 135, 12188.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    5. [5]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    6. [6]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    7. [7]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    8. [8]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    16. [16]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(10)
  • Abstract views(2491)
  • HTML views(203)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return