Citation: Zhang Luwen, Wen Zhiguo, Borzov Maxim, Nie Wanli. Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction[J]. Acta Chimica Sinica, ;2017, 75(8): 819-823. doi: 10.6023/A17040142 shu

Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction

  • Corresponding author: Nie Wanli, niewl126@126.com
  • Received Date: 6 April 2017
    Available Online: 23 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21542011) and Scientific Research Fund of Leshan Normal University (Nos.Z1414, Z1308)the National Natural Science Foundation of China 21542011Scientific Research Fund of Leshan Normal University Z1308Scientific Research Fund of Leshan Normal University Z1414

Figures(4)

  • Although in recent years the frustrated Lewis pairs (FLPs) reactivity towards small molecule activation has been widely concerned, the reports on the FLPs derived from aromatic amines are few. This paper describes a new method of an one-pot hydroamination/reduction reaction of terminal alkynes with aromatic amines catalyzed by the B(C6F5)3/aromatic ammonium chloride systems with a hydridosilane as a source of the hydride. We consider that the active intermediate[Ar2NH2]+[H-B(C6F5)3]-which formed by the aromatic ammonium chloride/B(C6F5)3 reaction with silanes plays a very important role on the formation and reduction of the mediate product imines. The hydroamination reaction is firstly induced by the trace amount amines produced by the dissociation of the borohydride aromatic amine salt, which then reacts with the alkynes and forms the imines. Then the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]- reduces the imines to amines. It has been proved that the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]-could successfully reduce the corresponding imines to amines in an in-situ reaction condition. However it has been found that the usually most active mono-substituted hydridosilane, such as PhSiH3 shows the poorest reactivity in this case. And the less active trisubstituted silanes such as Et3SiH or Ph3SiH exhibit the highest reactivity. To explain this abnormal phenomenon the different reaction speeds of the cascade hydroamination/reduction reaction and the dissociation of the borohydride aromatic amine salt should be concerned. Since the dissociation of[Ar2NH2]+[H-B(C6F5)3]-to H2 is comparably quicker than the hydroamination reaction. By reacting with the less active trisubstituted silanes could not only slow down the formation and dissociation of[Ar2NH2]+[H-B(C6F5)3]-, but could also let the hydroamination and reduction steps proceeded completely. Moreover by slowly adding the diluted hydrosilanes to the reaction systems could also improve the reaction. The reaction yield is affected by the substituent on the terminal alkynes, too. The alkynes with the electron withdrawn group show comparably higher reactivity than with the electron donating ones.
  • 加载中
    1. [1]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.  doi: 10.1021/cr0306788

    2. [2]

      Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.  doi: 10.1039/b600981f

    3. [3]

      Nishina, N.; Yamamoto, Y. Top. Organomet. Chem. 2013, 43, 115.

    4. [4]

      (a) Sun, Q.; Wang, Y.-R.; Yuan, D.; Yao, Y.-M.; Shen, Q. Organometallics 2014, 33, 994. (b) Liang, S.-Z.; Hammond, L.; Xu, B.; Hammond, G. B. Adv. Synth. Catal. 2016, 358(20), 3313. (c) Sakai, N.; Takahashi, N.; Ogiwara, Y. Eur. J. Org. Chem. 2014, 5078.

    5. [5]

      Wang, J.; Cui, D.-M. Chin. J. Org. Chem. 2016, 36(6), 1163
       

    6. [6]

      Bian, R.-J.; Bao, X.-G. Chin. J. Org. Chem. 2017, 37(1), 190
       

    7. [7]

      McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6594.  doi: 10.1021/om1009044

    9. [9]

      Sajid, M.; Elmer, L.-M.; Rosorius, C.; Daniliuc, C. G.; Grimme, S.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2013, 52, 2243.  doi: 10.1002/anie.201208750

    10. [10]

      Mçmming, C. M.; Otten, E.; Kehr, G.; Frçhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.  doi: 10.1002/anie.v48:36

    11. [11]

      Cardenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Froehlich, R.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2011, 50, 7567.  doi: 10.1002/anie.201101622

    12. [12]

      Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918.  doi: 10.1021/ja904377v

    13. [13]

      Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Froehlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Chem. Sci. 2013, 4, 213.  doi: 10.1039/C2SC21161K

    14. [14]

      Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 12418.  doi: 10.1002/anie.201307254

    15. [15]

      Mahdi, T.; Stephan, D. W. Chem. Eur. J. 2015, 21, 11134.  doi: 10.1002/chem.v21.31

    16. [16]

      Wen, Z.-G.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498.
       

    17. [17]

      Hu, X.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025.  doi: 10.3866/PKU.WHXB201504141
       

    18. [18]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. V. Z. Naturforsch. 2016, 71(10) b, 1029.

    19. [19]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    20. [20]

      Li, L.; Huang, G.; Chen, Z.; Liu, W.; Wang, X.; Chen, Y.; Yang, L.; Li, W.; Li, Y. Eur. J. Org. Chem. 2012, 28, 5564.

  • 加载中
    1. [1]

      Mengxiu LiJiahui MaoJiangfeng NiLiang Li . Three birds with one stone: modification of Li5FeO4 with thermal induction of Lewis acid. Acta Physico-Chimica Sinica, 2026, 42(4): 100189-0. doi: 10.1016/j.actphy.2025.100189

    2. [2]

      Baitong Wei Rongxiu Zhu Zhenghu Xu . Thalidomide: Defeating the Three Evils. University Chemistry, 2026, 41(2): 273-278. doi: 10.12461/PKU.DXHX202502020

    3. [3]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    6. [6]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    7. [7]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    11. [11]

      Dawei Zhang Lei Zhang Yibo Zhou Yajie Li YuPeng Guo . Developing a “One Core, Three Dimensions, Five Integrations” Chemistry Curriculum System for Non-Chemistry Majors at Jilin University. University Chemistry, 2025, 40(12): 147-156. doi: 10.12461/PKU.DXHX202510089

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    14. [14]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    18. [18]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(7)
  • Abstract views(2283)
  • HTML views(625)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return