Citation: Zhang Luwen, Wen Zhiguo, Borzov Maxim, Nie Wanli. Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction[J]. Acta Chimica Sinica, ;2017, 75(8): 819-823. doi: 10.6023/A17040142 shu

Research of B(C6F5)3/Aromatic Ammonium Chloride Systems Catalyzed Hydroamination/Reduction Reaction

  • Corresponding author: Nie Wanli, niewl126@126.com
  • Received Date: 6 April 2017
    Available Online: 23 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21542011) and Scientific Research Fund of Leshan Normal University (Nos.Z1414, Z1308)the National Natural Science Foundation of China 21542011Scientific Research Fund of Leshan Normal University Z1308Scientific Research Fund of Leshan Normal University Z1414

Figures(4)

  • Although in recent years the frustrated Lewis pairs (FLPs) reactivity towards small molecule activation has been widely concerned, the reports on the FLPs derived from aromatic amines are few. This paper describes a new method of an one-pot hydroamination/reduction reaction of terminal alkynes with aromatic amines catalyzed by the B(C6F5)3/aromatic ammonium chloride systems with a hydridosilane as a source of the hydride. We consider that the active intermediate[Ar2NH2]+[H-B(C6F5)3]-which formed by the aromatic ammonium chloride/B(C6F5)3 reaction with silanes plays a very important role on the formation and reduction of the mediate product imines. The hydroamination reaction is firstly induced by the trace amount amines produced by the dissociation of the borohydride aromatic amine salt, which then reacts with the alkynes and forms the imines. Then the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]- reduces the imines to amines. It has been proved that the borohydride intermediate[Ar2NH2]+[H-B(C6F5)3]-could successfully reduce the corresponding imines to amines in an in-situ reaction condition. However it has been found that the usually most active mono-substituted hydridosilane, such as PhSiH3 shows the poorest reactivity in this case. And the less active trisubstituted silanes such as Et3SiH or Ph3SiH exhibit the highest reactivity. To explain this abnormal phenomenon the different reaction speeds of the cascade hydroamination/reduction reaction and the dissociation of the borohydride aromatic amine salt should be concerned. Since the dissociation of[Ar2NH2]+[H-B(C6F5)3]-to H2 is comparably quicker than the hydroamination reaction. By reacting with the less active trisubstituted silanes could not only slow down the formation and dissociation of[Ar2NH2]+[H-B(C6F5)3]-, but could also let the hydroamination and reduction steps proceeded completely. Moreover by slowly adding the diluted hydrosilanes to the reaction systems could also improve the reaction. The reaction yield is affected by the substituent on the terminal alkynes, too. The alkynes with the electron withdrawn group show comparably higher reactivity than with the electron donating ones.
  • 加载中
    1. [1]

      Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.  doi: 10.1021/cr0306788

    2. [2]

      Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.  doi: 10.1039/b600981f

    3. [3]

      Nishina, N.; Yamamoto, Y. Top. Organomet. Chem. 2013, 43, 115.

    4. [4]

      (a) Sun, Q.; Wang, Y.-R.; Yuan, D.; Yao, Y.-M.; Shen, Q. Organometallics 2014, 33, 994. (b) Liang, S.-Z.; Hammond, L.; Xu, B.; Hammond, G. B. Adv. Synth. Catal. 2016, 358(20), 3313. (c) Sakai, N.; Takahashi, N.; Ogiwara, Y. Eur. J. Org. Chem. 2014, 5078.

    5. [5]

      Wang, J.; Cui, D.-M. Chin. J. Org. Chem. 2016, 36(6), 1163
       

    6. [6]

      Bian, R.-J.; Bao, X.-G. Chin. J. Org. Chem. 2017, 37(1), 190
       

    7. [7]

      McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968.  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6594.  doi: 10.1021/om1009044

    9. [9]

      Sajid, M.; Elmer, L.-M.; Rosorius, C.; Daniliuc, C. G.; Grimme, S.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2013, 52, 2243.  doi: 10.1002/anie.201208750

    10. [10]

      Mçmming, C. M.; Otten, E.; Kehr, G.; Frçhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48, 6643.  doi: 10.1002/anie.v48:36

    11. [11]

      Cardenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Froehlich, R.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2011, 50, 7567.  doi: 10.1002/anie.201101622

    12. [12]

      Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 9918.  doi: 10.1021/ja904377v

    13. [13]

      Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Froehlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Chem. Sci. 2013, 4, 213.  doi: 10.1039/C2SC21161K

    14. [14]

      Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 12418.  doi: 10.1002/anie.201307254

    15. [15]

      Mahdi, T.; Stephan, D. W. Chem. Eur. J. 2015, 21, 11134.  doi: 10.1002/chem.v21.31

    16. [16]

      Wen, Z.-G.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498.
       

    17. [17]

      Hu, X.; Tian, C.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025.  doi: 10.3866/PKU.WHXB201504141
       

    18. [18]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. V. Z. Naturforsch. 2016, 71(10) b, 1029.

    19. [19]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    20. [20]

      Li, L.; Huang, G.; Chen, Z.; Liu, W.; Wang, X.; Chen, Y.; Yang, L.; Li, W.; Li, Y. Eur. J. Org. Chem. 2012, 28, 5564.

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(5)
  • Abstract views(1447)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return