Citation: Cai Yuejin, Liu Chenxia, Zhuo Ou, Wu Qiang, Yang Lijun, Chen Qiang, Wang Xizhang, Hu Zheng. Ruthenium Nanoparticles Supported on Hierarchical Nitrogen-Doped Carbon Nanocages for Selective Hydrogenation of Acetophenone in Mild Conditions[J]. Acta Chimica Sinica, ;2017, 75(7): 686-691. doi: 10.6023/A17030134 shu

Ruthenium Nanoparticles Supported on Hierarchical Nitrogen-Doped Carbon Nanocages for Selective Hydrogenation of Acetophenone in Mild Conditions

  • Corresponding author: Wu Qiang, wqchem@nju.edu.cn Wang Xizhang, wangxzh@nju.edu.cn
  • Received Date: 31 March 2017

    Fund Project: Changzhou Technology Support Program CE20130032the National Natural Science Foundation of China 21573107the National Natural Science Foundation of China 21373108the National Natural Science Foundation of China 51232003the National Basic Research Program of China 2013CB932902the National Natural Science Foundation of China 51571110the National Natural Science Foundation of China 21473089

Figures(4)

  • The selective hydrogenation of carbonyl groups of the conjugated carbonyl compounds is an important reaction in the pharmaceutical and chemical industries, and several selective hydrogenation approaches have been developed.Using stoichiometric hydrides (LiAlH4, NaBH4, etc.) as hydrogenation reagents has some shortcomings, including the unsatisfied selectivity of target product owing to the simultaneous hydrogenation of conjugated double bonds and carbonyl groups, as well as the flammability and explosibility of hydrides.Hydrogen is an alternative hydrogenation reagent, which can selectively hydrogenate carbonyl groups by homogeneous and heterogeneous catalytic processes.The noble metal (Ru, Pd, etc.) complexes were usually used in the homogeneous catalytic process, which caused some serious issues such as the metal residues in products and the difficulties of recovering precious catalysts.These problems can be effectively solved by the heterogeneous catalytic process using the supported catalysts.Carbon-based materials, metal oxides and β-Zeolite are commonly used supports.Among them, carbon-based materials are preferable due to their features of abundant morphologies and structures, good stability, adjustable specific surface areas and pore structures, easy doping, etc.Interestingly, the introduction of heteroatoms into carbon matrix can provide a plenty of anchoring sites to disperse catalytically active species and regulate the interaction between active species and support, and hence promotes their catalytic properties.In addition, the high specific surface areas of the supports are beneficial to the dispersion of the catalytically active species.In recent years, our group has developed hierarchical carbon-based nanocages by in situ MgO template method.The mesostructured nanocages feature the high specific surface area, coexisting micro-meso-macropore structure, rich defects, easy doping, etc., which demonstrated excellent electrochemical performance in energy conversion and storage.Herein, taking advantage of the anchoring functions of nitrogen heteroatoms and high specific surface area of nitrogen-doped carbon nanocage (hNCNC), 10 wt% Ru/hNCNC catalyst was conveniently prepared by microwave-assisted ethylene glycol reduction.The Ru nanoparticles of ca.2.4 nm are highly dispersed on the outer surface of hNCNC.As the catalyst for the selective hydrogenation of acetophenone to 1-phenylethanol, Ru/hNCNC exhibits excellent catalytic activity, selectivity and recyclability in mild conditions of 50.0℃ and 2.0 MPa H2.Specifically, after 2.0 h of reaction, the conversion of acetophenone is up to 96.2%, obviously higher than that of Ru/carbon nanocages (Ru/hCNC, 80%) and Ru/AC (0.7%), and the selectivity of 1-phenylethanol is 95.8%.More importantly, after recycle use for 6 times, the conversion of acetophenone only slightly drops from 96.2% to 94.0% for Ru/hNCNC, while obviously decreases from 80.0% to 63.0% for Ru/hCNC.Such excellent catalytic performance of Ru/hNCNC could be ascribed to the synergism of (ⅰ) the high dispersion of Ru nanoparticles owing to the high specific surface area and nitrogen doping of hNCNC, (ⅱ) the regulated electron structure of Ru catalyst owing to nitrogen incorporation, ⅲ) the facilitated mass transportation by unique hierarchical pore structures of hNCNC support.
  • 加载中
    1. [1]

      Chen, Q. A.; Ye, Z. S.; Duan, Y.; Zhou, Y. G. Chem. Soc. Rev. 2013, 42, 497.  doi: 10.1039/C2CS35333D

    2. [2]

      Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Appl. Catal., A 2005, 292, 1.  doi: 10.1016/j.apcata.2005.05.045

    3. [3]

      Gallezot, P.; Richard, D. Catal. Rev. 1998, 40, 81.  doi: 10.1080/01614949808007106

    4. [4]

      Brown, H. C.; Ramachandran, P. V. In Reductions in Organic Synthesis, Ed.:American Chemical Society, Washington, DC, 1996, Chapter 1.

    5. [5]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.  doi: 10.1002/1521-3773(20010105)40:1<>1.0.CO;2-6

    6. [6]

      Gao, A. L.; Ye, Q. S.; Yu, J.; Liu, W. P. Chin. J. Org. Chem. 2017, 37, 47.
       

    7. [7]

      Li, X. N.; Wang, L. H.; Zhou, H. Y.; Wang, J. X. Chin. J. Org. Chem. 2016, 36, 2175.
       

    8. [8]

      Dai, N.; Shang, R.; Fu, M. C.; Fu, Y. Chin. J. Chem. 2015, 33, 405.  doi: 10.1002/cjoc.v33.4

    9. [9]

      Liang, M. T.; Xia, X. F.; Liu, X.; Li, H. X. Chin. J. Chem. 2015, 33, 578.  doi: 10.1002/cjoc.201500072

    10. [10]

      Toebes, M. L.; Zhang, Y. H.; Hájek, J.; Nijhuis, T. A.; Bitter, J. H.; van Dillen, A. J.; Murzin, D. Y.; Koningsberger, D. C.; de Jong K. P. J. Catal. 2004, 226, 215.  doi: 10.1016/j.jcat.2004.05.026

    11. [11]

      Bergault, I.; Fouilloux, P.; Joly-Vuillemin, C.; Delmas, H. J. Catal. 1998, 175, 328.  doi: 10.1006/jcat.1998.2019

    12. [12]

      Zhao, B. H.; Chen, J. G.; Liu, X.; Liu, Z. W.; Hao, Z. P.; Xiao, J. L.; Liu, Z. T. Ind. Eng. Chem. 2012, 51, 11112.  doi: 10.1021/ie301569q

    13. [13]

      Gopiraman, M.; Babu, G. S.; Khatri, Z.; Kai, W.; Kim, Y. A.; Endo, M.; Karvembu, R.; Kim, I. S. J. Phys. Chem. C 2013, 117, 23582.  doi: 10.1021/jp402978q

    14. [14]

      Xiong, W.; Huang, Y. Y.; Chen, H.; Li, X. J. Acta Chim. Sinica 2005, 63, 1927.  doi: 10.3321/j.issn:0567-7351.2005.20.014
       

    15. [15]

      Malathi, R.; Viswanath, R. P. Appl. Catal. A 2001, 208, 323.  doi: 10.1016/S0926-860X(00)00715-8

    16. [16]

      Kantam, M. L.; Rao, B. P. C.; Choudary, B. M.; Sreedhar, B. Adv. Synth. Catal. 2006, 348, 1970.  doi: 10.1002/(ISSN)1615-4169

    17. [17]

      Yue, B.; Ma, Y. W.; Tao, H. S.; Yu, L. S.; Jian, G. Q.; Wang, X. Z.; Wang, X. S.; Lu, Y. N.; Hu, Z. J. Mater. Chem. 2008, 18, 1747.  doi: 10.1039/b718283j

    18. [18]

      Feng, H.; Ma, J.; Hu, Z. J. Mater. Chem. 2010, 20, 1702.  doi: 10.1039/b915667d

    19. [19]

      Ning, X. M.; Li, Y. H.; Dong, B. Q.; Wang, H. J.; Yu, H.; Peng, F.; Yang, Y. H. J. Catal. 2017, 348, 100.  doi: 10.1016/j.jcat.2017.02.011

    20. [20]

      Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Adv. Mater. 2012, 24, 347.  doi: 10.1002/adma.201103872

    21. [21]

      Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Adv. Mater. 2012, 24, 5593.  doi: 10.1002/adma.201202424

    22. [22]

      Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W.; Liu, J.; Hu, Z. Adv. Mater. 2015, 27, 3541.  doi: 10.1002/adma.v27.23

    23. [23]

      Jiang, S. J.; Zhu, L.; Ma, Y. W.; Wang, X. Z.; Liu, J. G.; Zhu, J. M.; Fan, Y. N.; Zou, Z. G.; Hu, Z. J. Power Sources 2010, 195, 7578.  doi: 10.1016/j.jpowsour.2010.06.025

    24. [24]

      Li, D. Q.; Zhang, Z. Q.; Zang, P. Y.; Ma, Y. W.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2016, 74, 587.  doi: 10.3969/j.issn.0253-2409.2016.05.011
       

    25. [25]

      Wang, H. S.; Wingender, C.; Baltruschat, H.; Lopez, M.; Reetz, M. T. J. Electroanal. Chem. 2001, 509, 163.  doi: 10.1016/S0022-0728(01)00531-9

    26. [26]

      Mihalcik, D. J.; Lin, W. B. Angew. Chem., Int. Ed. 2008, 47, 6229.  doi: 10.1002/anie.v47:33

  • 加载中
    1. [1]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(10)
  • Abstract views(1206)
  • HTML views(252)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return