Citation: Jia Tao, Zheng Nannan, Cai Wanqing, Ying Lei, Huang Fei. Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells[J]. Acta Chimica Sinica, ;2017, 75(8): 808-818. doi: 10.6023/A17030114 shu

Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells

  • Corresponding author: Huang Fei, msfhuang@scut.edu.cn
  • Received Date: 22 March 2017
    Available Online: 11 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21490573)Project supported by the National Natural Science Foundation of China 21490573

Figures(10)

  • In this work, we demonstrate the microwave-assisted synthesis of naphthalene diimide-based polymers via three-component polymerization (TCP) of diynes, dialdehydes and dibenzylamine, and the applications of such polymers as cathode interfacial layers for polymer solar cells. The TCP of diynes (1a~1c), dialdehydes (2a~2b) and dibenzylamine catalyzed by InCl3 could be performed smoothly under microwave irradiation in very short reaction time, yielding soluble polymers P1~P4 with high molecular weights. The chemical structures of these resulting polymers were confirmed by nuclear magnetic resonance spectroscopy. The thermal stability, photophysical and electrochemical properties of the resulting polymers were also investigated. Besides, the effects of chemical environment of amine groups on the resulting polymers' electrode modification capability and self-doping behavior were explored by conducting scanning Kelvin probe microscopy and electron paramagnetic resonance (EPR) spectroscopy studies, respectively. It was found that the chemical environment variation of amine groups, including the decreasing electron density of the nitrogen atoms in alkylamine and the enhancing steric hindrance around the nitrogen atoms from substituent groups, can substantially influence the electrode modification capability and self-doping behavior of the resulting polymers. Moreover, quantum chemistry calculation was also conducted to qualitatively illuminate the essential distinction in chemical environment of different amine groups. It was found that the negative atomic dipole moment corrected Hirshfeld (ADCH) charge of nitrogen atoms in side chains was significantly larger than the ADCH charges of nitrogen atoms in main chains. Among all the resulting polymers, P1 can be easily dissolved in alcohol due to its amino functionalized side chain groups and thus was utilized as the cathode interlayer for polymer solar cells. The device with P1 as the cathode interlayer and PTB7-Th:PC71BM as the photoactive layer exhibits a high power conversion efficiency of 9.34%, which is much better than that of the control device without such cathode interlayer. All these results provide a guideline for the material design of amino-functionalized polymers for the optoelectronic devices. And it was also shown that the multicomponent polymerization (MCP) is an effective strategy for the synthesis of functional polymers, and may trigger broad research interests in developing effective polymerization approaches toward multi-functional polymer materials.
  • 加载中
    1. [1]

      Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Kakuchi, R. Angew. Chem., Int. Ed. 2014, 53, 46.  doi: 10.1002/anie.v53.1

    3. [3]

      Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 2003, 4101.  doi: 10.1002/(ISSN)1099-0690

    4. [4]

      Andreana, P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231.  doi: 10.1021/ol0482893

    5. [5]

      D'Souza, D. M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095.  doi: 10.1039/B608235C

    6. [6]

      Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol. 2010, 14, 371.  doi: 10.1016/j.cbpa.2010.03.003

    7. [7]

      Siamaki, A. R.; Sakalauskas, M.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2011, 50, 6552.  doi: 10.1002/anie.v50.29

    8. [8]

      Thanh Binh, N.; Minh Quan, T.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2014, 16, 310.  doi: 10.1021/ol403345e

    9. [9]

      Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323.  doi: 10.1021/cr400615v

    10. [10]

      Levi, L.; Muller, T. J. J. Chem. Soc. Rev. 2016, 45, 2825.  doi: 10.1039/C5CS00805K

    11. [11]

      Teimouri, M. B.; Abbasi, T.; Mivehchi, H. Tetrahedron 2008, 64, 10425.  doi: 10.1016/j.tet.2008.08.039

    12. [12]

      Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.  doi: 10.1021/ar2000343

    13. [13]

      Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.  doi: 10.1002/anie.201006515

    14. [14]

      Hossaini, Z.; Seyfi, S.; Rostami-Charati, F.; Ghambarian, M. Comb. Chem. High Throughput Screen 2013, 16, 788.  doi: 10.2174/13862073113169990046

    15. [15]

      Pagadala, R.; Kommidi, D. R.; Kankala, S.; Maddila, S.; Singh, P.; Moodley, B.; Koorbanally, N. A.; Jonnalagadda, S. B. Org. Biomol. Chem. 2015, 13, 1800.  doi: 10.1039/C4OB02229G

    16. [16]

      Theato, P., Multi-Component and Sequential Reactions in Polymer Synthesis, Springer, 2015, Vol. 269.

    17. [17]

      Leitch, D. C.; Kayser, L. V.; Han, Z.-Y.; Siamaki, A. R.; Keyzer, E. N.; Gefen, A.; Arndtsen, B. A. Nature Commun. 2015, 6, 7411.  doi: 10.1038/ncomms8411

    18. [18]

      Hu, R. R.; Li, W. Z.; Tang, B. Z. Macromol. Chem. Phys. 2016, 217, 213.  doi: 10.1002/macp.201500291

    19. [19]

      Kreye, O.; Toth, T.; Meier, M. A. R. J. Am. Chem. Soc. 2011, 133, 1790.  doi: 10.1021/ja1113003

    20. [20]

      Lee, I.-H.; Kim, H.; Choi, T.-L. J. Am. Chem. Soc. 2013, 135, 3760.  doi: 10.1021/ja312592e

    21. [21]

      Chan, C. Y. K.; Tseng, N.-W.; Lam, J. W. Y.; Liu, J. Z.; Kwok, R. T. K.; Tang, B. Z. Macromolecules 2013, 46, 3246.  doi: 10.1021/ma4005346

    22. [22]

      Liu, Y. J.; Gao, M.; Lam, J. W. Y.; Hu, R. R.; Tang, B. Z. Macromolecules 2014, 47, 4908.  doi: 10.1021/ma501477w

    23. [23]

      Deng, H. Q.; Hu, R. R.; Zhao, E. G.; Chan, C. Y. K.; Lam, J. W. Y.; Tang, B. Z. Macromolecules 2014, 47, 4920.  doi: 10.1021/ma501190g

    24. [24]

      Li, W. Z.; Wu, X. Y.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Macromolecules 2015, 48, 7747.  doi: 10.1021/acs.macromol.5b02193

    25. [25]

      Zheng, C.; Deng, H. Q.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Macromolecules 2015, 48, 1941.  doi: 10.1021/acs.macromol.5b00175

    26. [26]

      Deng, H. Q.; Hu, R. R.; Leung, A. C. S.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. Polym. Chem. 2015, 6, 4436.  doi: 10.1039/C5PY00477B

    27. [27]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.  doi: 10.1126/science.270.5243.1789

    28. [28]

      Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354.  doi: 10.1039/b914956m

    29. [29]

      Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110, 6689.  doi: 10.1021/cr9002984

    30. [30]

      Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Chem. Rev. 2014, 114, 7006.  doi: 10.1021/cr400353v

    31. [31]

      Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Chem. Rev. 2015, 115, 12666.  doi: 10.1021/acs.chemrev.5b00098

    32. [32]

      Zhang, X.; Wang, Z. L.; Chen, S. Y.; Zhao, Z.; Yuan, W.; Wang, H. P.; Gao, X. K. Chin. J. Chem. 2014, 32, 1057.

    33. [33]

      Zhao, C. B.; Wang, Z. L.; Zhou, K.; Ge, H. G.; Zhang, Q.; Jin, L. X.; Wang, W. L.; Yin, S. W. Acta Chim. Sinica 2015, 74, 251.  doi: 10.3969/j.issn.0253-2409.2015.02.017
       

    34. [34]

      Liu, L. Q.; Zhang, G. C.; He, B. T.; Huang, F. Chin. J. Chem. 2015, 33, 902.

    35. [35]

      Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7, 1966.  doi: 10.1039/c4ee00022f

    36. [36]

      Wu, Z. H.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S. P.; Wu, H. B.; Yip, H.-L.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2016, 138, 2004.  doi: 10.1021/jacs.5b12664

    37. [37]

      Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489.
       

    38. [38]

      Duan, C. H.; Zhang, K.; Zhong, C. M.; Huang, F.; Cao, Y. Chem. Soc. Rev. 2013, 42, 9071.  doi: 10.1039/c3cs60200a

    39. [39]

      Hu, Z. C.; Zhang, K.; Huang, F.; Cao, Y. Chem. Commun. 2015, 51, 5572.  doi: 10.1039/C4CC09433F

    40. [40]

      Yip, H.-L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994.  doi: 10.1039/c2ee02806a

    41. [41]

      Lu, J. M.; Cai, W. Q.; Zhang, G. C.; Liu, S. J.; Ying, L.; Huang, F. Acta Chim. Sinica 2015, 73, 1153.  doi: 10.3866/PKU.WHXB201504145
       

    42. [42]

      Zhang, K.; Hu, Z. C.; Sun, C.; Wu, Z. H.; Huang, F.; Cao, Y. Chem. Mater. 2017, 29, 141.  doi: 10.1021/acs.chemmater.6b02802

    43. [43]

      van Reenen, S.; Kouijzer, S.; Janssen, R. A. J.; Wienk, M. M.; Kemerink, M. Adv. Mater. Inter. 2014, 1, 1400189.  doi: 10.1002/admi.201400189

    44. [44]

      Hu, Z. H.; Zhong, Z. M.; Chen, Y. W.; Sun, C.; Huang, F.; Peng, J. B.; Wang, J.; Cao, Y. Adv. Funct. Mater. 2016, 26, 129.  doi: 10.1002/adfm.201503420

    45. [45]

      Liu, S. J.; Zhang, K.; Lu, J. M.; Zhang, J.; Yip, H. L.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2013, 135, 15326.  doi: 10.1021/ja408363c

    46. [46]

      Liu, X.; Xu, R. G.; Duan, C.; Huang, F.; Cao, Y. J. Mater. Chem. C 2016, 4, 4288.

    47. [47]

      Guan, X.; Zhang, K.; Huang, F.; Bazan, G. C.; Cao, Y. Adv. Funct. Mater. 2012, 22, 2846.  doi: 10.1002/adfm.v22.13

    48. [48]

      Kan, Y. Y.; Zhu, Y. X.; Liu, Z. L.; Zhang, L. J.; Chen, J. W.; Cao, Y. Macromol. Rapid Commun. 2015, 36, 1393.  doi: 10.1002/marc.v36.15

    49. [49]

      Jia, T.; Zheng, N. N.; Cai, W. Q.; Zhang, J.; Ying, L.; Huang, F.; Cao, Y. Chin. J. Polym. Sci. 2017, 35, 269.

    50. [50]

      Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    51. [51]

      Bucella, S. G.; Luzio, A.; Gann, E.; Thomsen, L.; McNeill, C. R.; Pace, G.; Perinot, A.; Chen, Z. H.; Facchetti, A.; Caironi, M. Nature Commun. 2015, 6, 8394.  doi: 10.1038/ncomms9394

    52. [52]

      Facchetti, A. Mater. Today 2013, 16, 123.  doi: 10.1016/j.mattod.2013.04.005

    53. [53]

      Mu, C.; Liu, P.; Ma, W.; Jiang, K.; Zhao, J.; Zhang, K.; Chen, Z. H.; Wei, Z. H.; Yi, Y.; Wang, J. N.; Yang, S. H.; Huang, F.; Facchetti, A.; Ade, H.; Yan, H. Adv. Mater. 2014, 26, 7224.  doi: 10.1002/adma.v26.42

    54. [54]

      Fabiano, S.; Himmelberger, S.; Drees, M.; Chen, Z.; Altamimi, R. M.; Salleo, A.; Loi, M. A.; Facchetti, A. Adv. Energy Mater. 2014, 4, 1301409.  doi: 10.1002/aenm.201301409

    55. [55]

      Sun, C.; Wu, Z. H.; Yip, H.-L.; Zhang, H.; Jiang, X.-F.; Xue, Q.; Hu, Z. C.; Hu, Z.; Shen, Y.; Wang, M.; Huang, F.; Cao, Y. Adv. Energy Mater. 2016, 6, 15011534.

    56. [56]

      Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    57. [57]

      McLean, A.; Chandler, G. J. Chem. Phys. 1980, 72, 5639.

    58. [58]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    59. [59]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    60. [60]

      Lu, T.; Chen, F. W. J. Theor. Comput. Chem. 2012, 11, 163.  doi: 10.1142/S0219633612500113

    61. [61]

      Bhosale, S. V.; Jani, C. H.; Langford, S. J. Chem. Soc. Rev. 2008, 37, 331.  doi: 10.1039/B615857A

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(10)
  • Abstract views(1230)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return