Citation: Jia Tao, Zheng Nannan, Cai Wanqing, Ying Lei, Huang Fei. Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells[J]. Acta Chimica Sinica, ;2017, 75(8): 808-818. doi: 10.6023/A17030114 shu

Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells

  • Corresponding author: Huang Fei, msfhuang@scut.edu.cn
  • Received Date: 22 March 2017
    Available Online: 11 August 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21490573)Project supported by the National Natural Science Foundation of China 21490573

Figures(10)

  • In this work, we demonstrate the microwave-assisted synthesis of naphthalene diimide-based polymers via three-component polymerization (TCP) of diynes, dialdehydes and dibenzylamine, and the applications of such polymers as cathode interfacial layers for polymer solar cells. The TCP of diynes (1a~1c), dialdehydes (2a~2b) and dibenzylamine catalyzed by InCl3 could be performed smoothly under microwave irradiation in very short reaction time, yielding soluble polymers P1~P4 with high molecular weights. The chemical structures of these resulting polymers were confirmed by nuclear magnetic resonance spectroscopy. The thermal stability, photophysical and electrochemical properties of the resulting polymers were also investigated. Besides, the effects of chemical environment of amine groups on the resulting polymers' electrode modification capability and self-doping behavior were explored by conducting scanning Kelvin probe microscopy and electron paramagnetic resonance (EPR) spectroscopy studies, respectively. It was found that the chemical environment variation of amine groups, including the decreasing electron density of the nitrogen atoms in alkylamine and the enhancing steric hindrance around the nitrogen atoms from substituent groups, can substantially influence the electrode modification capability and self-doping behavior of the resulting polymers. Moreover, quantum chemistry calculation was also conducted to qualitatively illuminate the essential distinction in chemical environment of different amine groups. It was found that the negative atomic dipole moment corrected Hirshfeld (ADCH) charge of nitrogen atoms in side chains was significantly larger than the ADCH charges of nitrogen atoms in main chains. Among all the resulting polymers, P1 can be easily dissolved in alcohol due to its amino functionalized side chain groups and thus was utilized as the cathode interlayer for polymer solar cells. The device with P1 as the cathode interlayer and PTB7-Th:PC71BM as the photoactive layer exhibits a high power conversion efficiency of 9.34%, which is much better than that of the control device without such cathode interlayer. All these results provide a guideline for the material design of amino-functionalized polymers for the optoelectronic devices. And it was also shown that the multicomponent polymerization (MCP) is an effective strategy for the synthesis of functional polymers, and may trigger broad research interests in developing effective polymerization approaches toward multi-functional polymer materials.
  • 加载中
    1. [1]

      Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Kakuchi, R. Angew. Chem., Int. Ed. 2014, 53, 46.  doi: 10.1002/anie.v53.1

    3. [3]

      Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 2003, 4101.  doi: 10.1002/(ISSN)1099-0690

    4. [4]

      Andreana, P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231.  doi: 10.1021/ol0482893

    5. [5]

      D'Souza, D. M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 1095.  doi: 10.1039/B608235C

    6. [6]

      Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem. Biol. 2010, 14, 371.  doi: 10.1016/j.cbpa.2010.03.003

    7. [7]

      Siamaki, A. R.; Sakalauskas, M.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2011, 50, 6552.  doi: 10.1002/anie.v50.29

    8. [8]

      Thanh Binh, N.; Minh Quan, T.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2014, 16, 310.  doi: 10.1021/ol403345e

    9. [9]

      Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323.  doi: 10.1021/cr400615v

    10. [10]

      Levi, L.; Muller, T. J. J. Chem. Soc. Rev. 2016, 45, 2825.  doi: 10.1039/C5CS00805K

    11. [11]

      Teimouri, M. B.; Abbasi, T.; Mivehchi, H. Tetrahedron 2008, 64, 10425.  doi: 10.1016/j.tet.2008.08.039

    12. [12]

      Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.  doi: 10.1021/ar2000343

    13. [13]

      Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.  doi: 10.1002/anie.201006515

    14. [14]

      Hossaini, Z.; Seyfi, S.; Rostami-Charati, F.; Ghambarian, M. Comb. Chem. High Throughput Screen 2013, 16, 788.  doi: 10.2174/13862073113169990046

    15. [15]

      Pagadala, R.; Kommidi, D. R.; Kankala, S.; Maddila, S.; Singh, P.; Moodley, B.; Koorbanally, N. A.; Jonnalagadda, S. B. Org. Biomol. Chem. 2015, 13, 1800.  doi: 10.1039/C4OB02229G

    16. [16]

      Theato, P., Multi-Component and Sequential Reactions in Polymer Synthesis, Springer, 2015, Vol. 269.

    17. [17]

      Leitch, D. C.; Kayser, L. V.; Han, Z.-Y.; Siamaki, A. R.; Keyzer, E. N.; Gefen, A.; Arndtsen, B. A. Nature Commun. 2015, 6, 7411.  doi: 10.1038/ncomms8411

    18. [18]

      Hu, R. R.; Li, W. Z.; Tang, B. Z. Macromol. Chem. Phys. 2016, 217, 213.  doi: 10.1002/macp.201500291

    19. [19]

      Kreye, O.; Toth, T.; Meier, M. A. R. J. Am. Chem. Soc. 2011, 133, 1790.  doi: 10.1021/ja1113003

    20. [20]

      Lee, I.-H.; Kim, H.; Choi, T.-L. J. Am. Chem. Soc. 2013, 135, 3760.  doi: 10.1021/ja312592e

    21. [21]

      Chan, C. Y. K.; Tseng, N.-W.; Lam, J. W. Y.; Liu, J. Z.; Kwok, R. T. K.; Tang, B. Z. Macromolecules 2013, 46, 3246.  doi: 10.1021/ma4005346

    22. [22]

      Liu, Y. J.; Gao, M.; Lam, J. W. Y.; Hu, R. R.; Tang, B. Z. Macromolecules 2014, 47, 4908.  doi: 10.1021/ma501477w

    23. [23]

      Deng, H. Q.; Hu, R. R.; Zhao, E. G.; Chan, C. Y. K.; Lam, J. W. Y.; Tang, B. Z. Macromolecules 2014, 47, 4920.  doi: 10.1021/ma501190g

    24. [24]

      Li, W. Z.; Wu, X. Y.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Macromolecules 2015, 48, 7747.  doi: 10.1021/acs.macromol.5b02193

    25. [25]

      Zheng, C.; Deng, H. Q.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Macromolecules 2015, 48, 1941.  doi: 10.1021/acs.macromol.5b00175

    26. [26]

      Deng, H. Q.; Hu, R. R.; Leung, A. C. S.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. Polym. Chem. 2015, 6, 4436.  doi: 10.1039/C5PY00477B

    27. [27]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.  doi: 10.1126/science.270.5243.1789

    28. [28]

      Heeger, A. J. Chem. Soc. Rev. 2010, 39, 2354.  doi: 10.1039/b914956m

    29. [29]

      Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110, 6689.  doi: 10.1021/cr9002984

    30. [30]

      Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Chem. Rev. 2014, 114, 7006.  doi: 10.1021/cr400353v

    31. [31]

      Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Chem. Rev. 2015, 115, 12666.  doi: 10.1021/acs.chemrev.5b00098

    32. [32]

      Zhang, X.; Wang, Z. L.; Chen, S. Y.; Zhao, Z.; Yuan, W.; Wang, H. P.; Gao, X. K. Chin. J. Chem. 2014, 32, 1057.

    33. [33]

      Zhao, C. B.; Wang, Z. L.; Zhou, K.; Ge, H. G.; Zhang, Q.; Jin, L. X.; Wang, W. L.; Yin, S. W. Acta Chim. Sinica 2015, 74, 251.  doi: 10.3969/j.issn.0253-2409.2015.02.017
       

    34. [34]

      Liu, L. Q.; Zhang, G. C.; He, B. T.; Huang, F. Chin. J. Chem. 2015, 33, 902.

    35. [35]

      Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Energy Environ. Sci. 2014, 7, 1966.  doi: 10.1039/c4ee00022f

    36. [36]

      Wu, Z. H.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S. P.; Wu, H. B.; Yip, H.-L.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2016, 138, 2004.  doi: 10.1021/jacs.5b12664

    37. [37]

      Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489.
       

    38. [38]

      Duan, C. H.; Zhang, K.; Zhong, C. M.; Huang, F.; Cao, Y. Chem. Soc. Rev. 2013, 42, 9071.  doi: 10.1039/c3cs60200a

    39. [39]

      Hu, Z. C.; Zhang, K.; Huang, F.; Cao, Y. Chem. Commun. 2015, 51, 5572.  doi: 10.1039/C4CC09433F

    40. [40]

      Yip, H.-L.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 5994.  doi: 10.1039/c2ee02806a

    41. [41]

      Lu, J. M.; Cai, W. Q.; Zhang, G. C.; Liu, S. J.; Ying, L.; Huang, F. Acta Chim. Sinica 2015, 73, 1153.  doi: 10.3866/PKU.WHXB201504145
       

    42. [42]

      Zhang, K.; Hu, Z. C.; Sun, C.; Wu, Z. H.; Huang, F.; Cao, Y. Chem. Mater. 2017, 29, 141.  doi: 10.1021/acs.chemmater.6b02802

    43. [43]

      van Reenen, S.; Kouijzer, S.; Janssen, R. A. J.; Wienk, M. M.; Kemerink, M. Adv. Mater. Inter. 2014, 1, 1400189.  doi: 10.1002/admi.201400189

    44. [44]

      Hu, Z. H.; Zhong, Z. M.; Chen, Y. W.; Sun, C.; Huang, F.; Peng, J. B.; Wang, J.; Cao, Y. Adv. Funct. Mater. 2016, 26, 129.  doi: 10.1002/adfm.201503420

    45. [45]

      Liu, S. J.; Zhang, K.; Lu, J. M.; Zhang, J.; Yip, H. L.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2013, 135, 15326.  doi: 10.1021/ja408363c

    46. [46]

      Liu, X.; Xu, R. G.; Duan, C.; Huang, F.; Cao, Y. J. Mater. Chem. C 2016, 4, 4288.

    47. [47]

      Guan, X.; Zhang, K.; Huang, F.; Bazan, G. C.; Cao, Y. Adv. Funct. Mater. 2012, 22, 2846.  doi: 10.1002/adfm.v22.13

    48. [48]

      Kan, Y. Y.; Zhu, Y. X.; Liu, Z. L.; Zhang, L. J.; Chen, J. W.; Cao, Y. Macromol. Rapid Commun. 2015, 36, 1393.  doi: 10.1002/marc.v36.15

    49. [49]

      Jia, T.; Zheng, N. N.; Cai, W. Q.; Zhang, J.; Ying, L.; Huang, F.; Cao, Y. Chin. J. Polym. Sci. 2017, 35, 269.

    50. [50]

      Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    51. [51]

      Bucella, S. G.; Luzio, A.; Gann, E.; Thomsen, L.; McNeill, C. R.; Pace, G.; Perinot, A.; Chen, Z. H.; Facchetti, A.; Caironi, M. Nature Commun. 2015, 6, 8394.  doi: 10.1038/ncomms9394

    52. [52]

      Facchetti, A. Mater. Today 2013, 16, 123.  doi: 10.1016/j.mattod.2013.04.005

    53. [53]

      Mu, C.; Liu, P.; Ma, W.; Jiang, K.; Zhao, J.; Zhang, K.; Chen, Z. H.; Wei, Z. H.; Yi, Y.; Wang, J. N.; Yang, S. H.; Huang, F.; Facchetti, A.; Ade, H.; Yan, H. Adv. Mater. 2014, 26, 7224.  doi: 10.1002/adma.v26.42

    54. [54]

      Fabiano, S.; Himmelberger, S.; Drees, M.; Chen, Z.; Altamimi, R. M.; Salleo, A.; Loi, M. A.; Facchetti, A. Adv. Energy Mater. 2014, 4, 1301409.  doi: 10.1002/aenm.201301409

    55. [55]

      Sun, C.; Wu, Z. H.; Yip, H.-L.; Zhang, H.; Jiang, X.-F.; Xue, Q.; Hu, Z. C.; Hu, Z.; Shen, Y.; Wang, M.; Huang, F.; Cao, Y. Adv. Energy Mater. 2016, 6, 15011534.

    56. [56]

      Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    57. [57]

      McLean, A.; Chandler, G. J. Chem. Phys. 1980, 72, 5639.

    58. [58]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    59. [59]

      Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.v33.5

    60. [60]

      Lu, T.; Chen, F. W. J. Theor. Comput. Chem. 2012, 11, 163.  doi: 10.1142/S0219633612500113

    61. [61]

      Bhosale, S. V.; Jani, C. H.; Langford, S. J. Chem. Soc. Rev. 2008, 37, 331.  doi: 10.1039/B615857A

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

Metrics
  • PDF Downloads(11)
  • Abstract views(1259)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return