Citation: Liu Chengshuai, Li Fangbai, Chen Manjia, Liao Changzhong, Tong Hui, Hua Jian. Adsorption and Stabilization of Lead during Fe(Ⅱ)-catalyzed Phase Transformation of Ferrihydrite[J]. Acta Chimica Sinica, ;2017, 75(6): 621-628. doi: 10.6023/A17030093 shu

Adsorption and Stabilization of Lead during Fe(Ⅱ)-catalyzed Phase Transformation of Ferrihydrite

  • Corresponding author: Li Fangbai, cefbli@soil.gd.cn
  • Received Date: 6 March 2017

    Fund Project: the Science and Technology Project of Guangdong Province S2013050014266the National Natural Science Foundation of China 41420104007the Science and Technology Project of Guangdong Province 2015A030313752the National Natural Science Foundation of China 41671240the National Natural Science Foundation of China 41673135the Science and Technology Project of Guangdong Province 2016B020242006the Science and Technology Project of Guangdong Province 2016A030313780

Figures(8)

  • Aqueous Fe(Ⅱ) (Fe(Ⅱ)aq)-catalyzed recrystallization of iron (hydr)oxides is the important chemical reaction of iron cycle in anaerobic environments, which poses significant effects on the environmental behavior of heavy metals in soils and sediments. Ferrihydrite is the initial iron mineral phase during the ferrous mineralization and has relatively unstable crystal structure. The structure transformation behavior of ferrihydrite is active and also poses important effects on environmental behavior of soil heavy metals. However, the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite has been rarely reported, especially with the coexisting metal ions. In the present study, the effects of coexisting heavy metal of Pb(Ⅱ) on the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite coupling the environmental behavior of Pb(Ⅱ) were systematically studied. The results show that ferrihydrite underwent efficient phase transformation rates when catalyzed by Fe(Ⅱ)aq whenever with or without the effect of Pb(Ⅱ). Compared with the reaction system that without Pb(Ⅱ), the adsorption of Fe(Ⅱ) on the surface of ferrihydrite was inhibited due to the competition of Pb(Ⅱ) when with the coexistence of Pb(Ⅱ), which further decreased the rates of Fe atom exchange between Fe(Ⅱ)aq and structural Fe(Ⅲ) of ferrihydrite. With the inhibited Fe atom exchange reaction, the phase transformation rates were relatively decreased and transformation products were changed during the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite. Goethite and magnetite were found to be the final transformed products of iron (hydr)oxides when without Pb(Ⅱ), while lepidocrocite was determined to be the main transformed product with little goethite and magnetite as the other transformed products when with Pb(Ⅱ). During the Fe(Ⅱ)aq-catalyzed phase transformation of ferrihydrite with the coexistence of Pb(Ⅱ), some Pb were stabilized through being incorporated into the structure of ferrihydrite transformed products with the possible mechanisms of occlusion by the crystal lattice and structural incorporation, so as to decrease the activity of the polluted heavy metal of Pb. The obtained results in the present study are expected to provide further insights for understanding the iron cycle coupling with the environmental behavior of heavy metals in soils and sediments.
  • 加载中
    1. [1]

      Latta, D. E.; Bachman, J. E.; Scherer, M. M. Environ. Sci. Technol. 2012, 46, 10614.  doi: 10.1021/es302094a

    2. [2]

      (a) Suter, D.; Siffert, C.; Sulzberger, B.; Stumm, W. Nturwissenschaften 1988, 75, 571. (b) Suter, D.; Banwart, S.; Stumm, W. Langmuir 1991, 7, 809.

    3. [3]

      (a) Williams, A. G.; Scherer, M. M. Environ. Sci. Technol. 2004, 38, 4782. (b) Pedersen, H. D.; Postma, D.; Jakobsen, R.; Larsen, O. Geochim. Cosmochim. Acta 2005, 69, 3967.

    4. [4]

      (a) Yanina, S. V.; Rosso, K. M. Science 2008, 320, 218. (b) Rosso, K. M.; Yanina, S. V.; Gorski, C. A.; Larese-Casanova, P.; Scherer, M. M. Environ. Sci. Technol. 2010, 44, 61.

    5. [5]

      Frierdich, A. J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K. M.; Scherer, M. M. Environ. Sci. Technol. 2015, 49, 8479.  doi: 10.1021/acs.est.5b01276

    6. [6]

      (a) Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 11070. (b) Frierdich, A. J.; Scherer, M. M.; Bachman, J. E.; Engelhard, M. H.; Rapponotti, B. W.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 10031.

    7. [7]

      Liu, C. S.; Zhu, Z. K.; Li, F. B.; Liu, T. X.; Liao, C. Z.; Lee, J. J.; Shih, K. M.; Tao, L.; Wu, Y. D. Chem. Geol. 2016, 444, 110.  doi: 10.1016/j.chemgeo.2016.10.002

    8. [8]

    9. [9]

    10. [10]

      (a) Tronc, E.; Belleville, P.; Jolivet, J. P.; Livage, J. Langmuir 1992, 8(1), 313. (b) Hansel, C. M.; Benner, S. G.; Fendorf, S. Environ. Sci. Technol. 2005, 39(18), 7147.

    11. [11]

      (a) Stewart, B. D.; Nico, P. S.; Fendorf, S. Environ. Sci. Technol. 2009, 43(13), 4922. (b) Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2010, 44(1), 102. (c) Felmy, A. R.; Moore, D. A.; Rosso, K. M.; Qafoku, O.; Rai, D.; Buck, E. C.; Ilton, E. S. Environ. Sci. Technol. 2011, 45(9), 3952.

    12. [12]

      (a) Schwertmann, U.; Taylor, R. M. Clays Clay Miner. 1972, 20(3), 151. (b) Yang, L.; Steefel, C. I.; Marcus, M. A.; Bargar, J. R. Environ. Sci. Technol. 2010, 44(14), 5469.

    13. [13]

      Frierdich, A. J.; Catalano, J. G. Environ. Sci. Technol. 2012, 46, 1519.  doi: 10.1021/es203272z

    14. [14]

    15. [15]

      (a) Alvarez, M.; Rueda, E. H.; Sileo, E. E. Geochim. Cosmochim. Acta 2007, 71, 1009. (b) Kaur, N.; Gräfe, M.; Singh, B.; Kennedy, B. Clays Clay Miner. 2009, 57(2), 234.

    16. [16]

      Jang, J. H.; Dempsey, B. A.; Catchen, G. L.; Burgos, W. D. Colloids Surf., A 2003, 221(1), 55.
       

    17. [17]

      Boland, D. D.; Collins, R. N.; Miller, C. J.; Glover, C. J.; Waite, T. D. Environ. Sci. Technol. 2014, 48(16), 9086.  doi: 10.1021/es501750z

    18. [18]

    19. [19]

      (a) Handler, R. M.; Beard, B. L.; Johnson, C. M.; Scherer, M. M. Environ. Sci. Technol. 2009, 43, 1102. (b) Joshi, P.; Gorski, C. A. Environ. Sci. Technol. 2016, 50, 7315.

    20. [20]

      Handler, R. M.; Frierdich, A. J.; Johnson, C. M.; Rosso, K. M.; Beard, B. L.; Wang, C.; Latta, D. E.; Neumann, A.; Pasakarnis, T.; Premaratne, W. A. P. J.; Scherer, M. M. Environ. Sci. Technol. 2014, 48, 11302.  doi: 10.1021/es503084u

    21. [21]

      Reddy, T. R.; Frierdich, A. J.; Beard, B. L.; Johnson, C. M. Chem. Geol. 2015, 397, 118.  doi: 10.1016/j.chemgeo.2015.01.018

    22. [22]

      Schilt, A. A. Applications of 1, 10-Phenanthroline and Related Compounds, 1st ed., Pergamon Press, Oxford, 1969.

    23. [23]

      Lu, X. W.; Shih, K. M.; Liu, C. S.; Wang, F. Environ. Sci. Technol. 2013, 47, 9972.  doi: 10.1021/es401674d

    24. [24]

      Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.; Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B.; Science 2007, 316, 1726.  doi: 10.1126/science.1142525

    25. [25]

      (a) De La Torre, A. G.; Bruque, S.; Aranda, M. A. G. J. Appl. Crystallogr. 2001, 34, 196. (b) Bernasconi, A.; Dapiaggi, M.; Gualtieri, A. F. J. Appl. Crystallogr. 2014, 47, 136.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    14. [14]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(23)
  • Abstract views(2754)
  • HTML views(421)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return