Citation: Xu Chenyu, Lin Jiayi, Pan Fuqiang, Deng Bowen, Wang Zhihua, Zhou Junhu, Chen Yun, Ma Jingcheng, Gu Zhien, Zhang Yanwei. Photo-thermochemical Cycle for CO2 Reduction based on Effective Ni ion Substitute-doped TiO2[J]. Acta Chimica Sinica, ;2017, 75(7): 699-707. doi: 10.6023/A17030083 shu

Photo-thermochemical Cycle for CO2 Reduction based on Effective Ni ion Substitute-doped TiO2

  • Corresponding author: Zhang Yanwei, zhangyw@zju.edu.cn
  • Received Date: 2 March 2017

    Fund Project: National Natural Science Foundation of China 51276170the Fundamental Research Funds for the Central Universities 2017FZA4014the Innovative Research Groups of the National Natural Science Foundation of China 51621005

Figures(16)

  • To study the mechanism of the photo-thermochemical cycle (PTC), titanium dioxide (ST) and Ni-doped TiO2(NT) films were produced using a sol-gel method and applied in the PTC for CO2 reduction.And commercial P25(PT) has been used as a compared sample.A comparison of CO production shows that Ni-doped TiO2 performed better than undoped TiO2 and P25.Average CO production of NT PTCs was 5.30 μmol/g-cat and it was nearly 3.13 times of ST PTCs'CO production and 2.28 times of PT PTCs'.Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDXS) and X-ray diffraction (XRD) were used to assess the crystal structure and morphology of the films.Ni element could be found in NT by EDXS and inductively coupled plasma-atomic emission spectrometry (ICP-AES), and the mass fraction of Ni was 0.54% and 0.436% which were agreed with experiments.This result of XRD indicated that Ni2+ may have high dispersion without significant change in TiO2 and Ni2+ ions were doped into the TiO2 lattice so that Ni-O-Ti bonds were formed.Photoluminescence (PL), time-resolved PL, UV-visible diffuse reflectance spectra (UV-visible DRS) and X-ray photoelectron spectroscopy (XPS) analyses were also conducted to investigate the charge transfer and reaction mechanisms on the sample surface.The incorporation of Ni into TiO2 resulted in a weaker PL intensity than that of bare TiO2, which suggests that the introduction of Ni into TiO2 effectively suppressed the undesirable recombination of electrons and holes.According to UV-visible DRS results, the Eg of PT is approximately 3.07 eV, which is smaller than that of ST (Eg=3.23 eV) and PT (Eg=3.20 eV).The narrower band gap of NT indicates that NT absorbed light with a wider wavelength range than that absorbed by ST and PT.By XPS patterns, the increase of Ni+/0 and Ti3+ indicated that the VO may have been produced on the bond of Ni-O-Ti after UV illumination, and oxygen vacancies (VO) have been consumed after thermal step in PTC.Density functional theory (DFT) calculations related to the anatase (101) surface of TiO2 and Ni doped TiO2 was performed to verify and provide guidance for enhancing the PTC mechanism.Single and second VO formation energy have been calculated.The Ni-doped surface exhibits better performance than the undoped surface in the first step in PTC, because of its lower VO formation energy which produce more VO sites.Density of states (DOS) and partial density of states (PDOS) results indicated that narrow energy gap and impurity energy level of Ni-doped TiO2 may lead to a wider wavelength range of NT.As a result, several key factors of the mechanism have been clarified.
  • 加载中
    1. [1]

      Grob, G. R. Appl. Energ. 2003, 76, 39.  doi: 10.1016/S0306-2619(03)00045-X

    2. [2]

      Song, C. Catal. Today 2006, 115, 2.  doi: 10.1016/j.cattod.2006.02.029

    3. [3]

      Olah, G. A.; Prakash, G. K.; Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881.  doi: 10.1021/ja202642y

    4. [4]

      Yuan, Q.; Chen, X.; Wang, J.; Zhai, J. Acta Chim. Sinica 2014, 72, 624.
       

    5. [5]

      Zhong, J.; Meng, Q.; Chen, B.; Tong, Z.; Wu, L. Acta Chim. Sinica 2017, 75, 34.  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    6. [6]

      Ying, Z.; Zhang, Y.; Xu, S.; Zhou, J.; Liu, J.; Wang, Z.; Cen, K. Int. J. Hydrogen Energ. 2014, 39, 18727.  doi: 10.1016/j.ijhydene.2014.09.039

    7. [7]

      Agrafiotis, C.; Roeb, M.; Sattler, C. Renew. Sust. Energ. Rev. 2015, 42, 254.  doi: 10.1016/j.rser.2014.09.039

    8. [8]

      Yu, W.; Xu, Difa.; Peng, T. J. Mater. Chem. A 2015, 3, 19936.  doi: 10.1039/C5TA05503B

    9. [9]

      Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Acta Chim. Sinica 2016, 74, 523.
       

    10. [10]

      Fletcher, E. A. J. Sol. Energ. 2001, 123, 63.  doi: 10.1115/1.1349552

    11. [11]

      William, C. C.; Christoph, F.; Mandy, A.; Danien, S.; Philipp, F.; Sossina, M. H.; Aldo, S. Science 2010, 330, 1797.  doi: 10.1126/science.1197834

    12. [12]

      Furler, P.; Scheffe, J. R.; Steinfeld, A. Energ. Environ. Sci. 2012, 5, 6098.  doi: 10.1039/C1EE02620H

    13. [13]

      Romero, M.; Steinfeld, A. Energ. Environ. Sci. 2012, 5, 9234.  doi: 10.1039/c2ee21275g

    14. [14]

      Arifin, D.; Aston, V. J.; Liang, X.; McDaniel, A. H.; Weimer, A. W. Energ. Environ. Sci. 2012, 5, 9438.  doi: 10.1039/c2ee22090c

    15. [15]

      Le Gal, A.; Abanades, S.; Flamant, G. Energ. Fuel. 2011, 25, 4836.  doi: 10.1021/ef200972r

    16. [16]

      Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41.  doi: 10.7503/cjcu20160643
       

    17. [17]

      Feng, B.; Muhammad, F, E.; Wei L.; Tao, H. Chin. J. Chem. 2015, 33, 112.  doi: 10.1002/cjoc.v33.1

    18. [18]

      Sun, D.; Li, Z. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.v35.2

    19. [19]

      Zhang, Y.; Xu, C.; Chen, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. Appl. Energ. 2015, 156, 223.  doi: 10.1016/j.apenergy.2015.07.028

    20. [20]

      Zhang, Y.; Chen, J.; Xu, C.; Zhou, K.; Wang, Z.; Zhou, J.; Cen, K. Int. J. Hydrogen Energ. 2016, 41, 2215.  doi: 10.1016/j.ijhydene.2015.12.067

    21. [21]

      Xu, C.; Zhang, Y.; Chen, J.; Lin, J.; Zhang, X.; Wang, Z.; Zhou, J. Appl. Catal. B-Environ. 2017, 204, 324.  doi: 10.1016/j.apcatb.2016.11.027

    22. [22]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    23. [23]

      He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S. Appl. Surf. Sci. 2016, 364, 416.  doi: 10.1016/j.apsusc.2015.12.163

    24. [24]

      Low, J.; Cheng, B.; Yu, J. Appl. Surf. Sci. 2017, 392, 658.  doi: 10.1016/j.apsusc.2016.09.093

    25. [25]

      Mei, T.; Harshkumar, H. P.; Matthew, S. S. Nature 2014, 508, 340.  doi: 10.1038/nature13231

    26. [26]

      Jiao, K.; Zhao, C.; Fang, P.; Mei, T. Tetrahedron Lett. 2017, 58, 797.  doi: 10.1016/j.tetlet.2016.12.065

    27. [27]

      Liu, X.; Liu, J.; Zhang, S.; Nan, Z.; Shi, Q. J. Phys. Chem. C 2016, 120, 1328.  doi: 10.1021/acs.jpcc.5b10618

    28. [28]

      Chang, S.-M.; Liu, W.-S. Appl. Catal. B-Environ. 2014, 466, 156.
       

    29. [29]

      Li, A.; Li, J.; Liu, Y.; Zhang, J.; Zhao, L.; Lu, Y. Acta Chim. Sinica 2013, 71, 815.
       

    30. [30]

      Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G. I. N. J. Catal. 2015, 326, 43.  doi: 10.1016/j.jcat.2015.03.008

    31. [31]

      Lin, X.; Lin, L.; Huang, K.; Chen, X.; Dai, W.; Fu, X. Appl. Catal. B-Environ. 2015, 416, 168.
       

    32. [32]

      Liu, Y.; Wang, Z.; Fan, W.; Geng, Z.; Feng, L. Ceram. Int. 2014, 40, 3887.  doi: 10.1016/j.ceramint.2013.08.030

    33. [33]

      Do, J. Y.; Kwak, B. S.; Park, S.-M.; Kang, M. Int. J. Photoenergy 2016, 1.
       

    34. [34]

      Shimoda, N.; Shoji, D.; Tani, K.; Fujiwara, M.; Urasaki, K.; Kikuchi, R.; Satokawa, S. A. Appl. Catal. B-Environ. 2015, 486, 174.

    35. [35]

      Kho, E. T.; Scott, J.; Amal, R. Chem. Eng. Sci. 2016, 140, 161.  doi: 10.1016/j.ces.2015.10.021

    36. [36]

      Lai, L.-L.; Wen, W.; Wu, J.-M. RSC Adv. 2016, 6, 25511.  doi: 10.1039/C6RA01752E

    37. [37]

      Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal. 2001, 203, 82.  doi: 10.1006/jcat.2001.3316

    38. [38]

      Zhang, Y.; Chen, J.; Li, X. Catal. Lett. 2010, 139, 129.  doi: 10.1007/s10562-010-0425-x

    39. [39]

      Yuan, J.; Wu, Q.; Zhang, P.; Yao, J.; He, T.; Cao, Y. Environ. Sci. Technol. 2012, 46, 2330.  doi: 10.1021/es203333k

    40. [40]

      Yan, Y.; Yu, Y.; Huang, S.; Yang, Y.; Yang, X.; Yin, S.; Cao, Y. J. Phys. Chem. C 2017, 121, 1089.  doi: 10.1021/acs.jpcc.6b07180

    41. [41]

      Cui, E.; Lu, G. Int. J. Hydrogen Energ. 2014, 39, 8959.  doi: 10.1016/j.ijhydene.2014.03.258

    42. [42]

      Kumar, V. V.; Naresh, G.; Deepa, S.; Bhavani, P. G.; Nagaraju, M.; Sudhakar, M.; Chary, K. V. R.; Tardio, J.; Bhargava, S. K.; Venugopal, A. Appl. Catal. A-Gen. 2017, 531, 169.  doi: 10.1016/j.apcata.2016.10.032

    43. [43]

      Liu, Q.; Ding, D.; Ning, C.; Wang, X. Int. J. Hydrogen Energ. 2015, 40, 2107.  doi: 10.1016/j.ijhydene.2014.12.064

    44. [44]

      Kim, D. H.; Kim, S. Y.; Han, S. W.; Cho, Y. K.; Jeong, M.-G.; Park, E. J.; Kim, Y. D. Appl. Catal. A-Gen. 2015, 495, 184.  doi: 10.1016/j.apcata.2015.02.015

    45. [45]

      Gao, M.; Jiang, D.; Sun, D.; Hou, B.; Li, D. Acta Chim. Sinica 2014, 72, 1092.
       

    46. [46]

      Lin, C.-K.; Chuang, C.-C.; Raghunath, P.; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C. Chem. Phys. Lett. 2017, 667, 278.  doi: 10.1016/j.cplett.2016.10.082

    47. [47]

      Chen, Q. L.; Li, B.; Zheng, G.; He, K. H.; Zheng, A. S. Physica B 2011, 406, 3841  doi: 10.1016/j.physb.2011.07.007

    48. [48]

      Ma, J.; He, H.; Liu, F. Appl. Catal. B-Environ. 2015, 179, 21.  doi: 10.1016/j.apcatb.2015.05.003

  • 加载中
    1. [1]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    2. [2]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Chunhui GaoLurong LiGuanwei PengJinni ShenWenxin DaiZizhong Zhang . Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flower-like microspheres. Acta Physico-Chimica Sinica, 2026, 42(3): 100165-0. doi: 10.1016/j.actphy.2025.100165

    5. [5]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    6. [6]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    9. [9]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    13. [13]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    15. [15]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    18. [18]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    19. [19]

      Yajun Jian Quan Gu Quanguo Zhai . Chemistry Frontiers-Intelligent Educational Technologies Collaborate to Construct CO2 Teaching Units. University Chemistry, 2026, 41(2): 82-94. doi: 10.12461/PKU.DXHX202503014

    20. [20]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(13)
  • Abstract views(3159)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return