Citation: Xu Chenyu, Lin Jiayi, Pan Fuqiang, Deng Bowen, Wang Zhihua, Zhou Junhu, Chen Yun, Ma Jingcheng, Gu Zhien, Zhang Yanwei. Photo-thermochemical Cycle for CO2 Reduction based on Effective Ni ion Substitute-doped TiO2[J]. Acta Chimica Sinica, ;2017, 75(7): 699-707. doi: 10.6023/A17030083 shu

Photo-thermochemical Cycle for CO2 Reduction based on Effective Ni ion Substitute-doped TiO2

  • Corresponding author: Zhang Yanwei, zhangyw@zju.edu.cn
  • Received Date: 2 March 2017

    Fund Project: National Natural Science Foundation of China 51276170the Fundamental Research Funds for the Central Universities 2017FZA4014the Innovative Research Groups of the National Natural Science Foundation of China 51621005

Figures(16)

  • To study the mechanism of the photo-thermochemical cycle (PTC), titanium dioxide (ST) and Ni-doped TiO2(NT) films were produced using a sol-gel method and applied in the PTC for CO2 reduction.And commercial P25(PT) has been used as a compared sample.A comparison of CO production shows that Ni-doped TiO2 performed better than undoped TiO2 and P25.Average CO production of NT PTCs was 5.30 μmol/g-cat and it was nearly 3.13 times of ST PTCs'CO production and 2.28 times of PT PTCs'.Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDXS) and X-ray diffraction (XRD) were used to assess the crystal structure and morphology of the films.Ni element could be found in NT by EDXS and inductively coupled plasma-atomic emission spectrometry (ICP-AES), and the mass fraction of Ni was 0.54% and 0.436% which were agreed with experiments.This result of XRD indicated that Ni2+ may have high dispersion without significant change in TiO2 and Ni2+ ions were doped into the TiO2 lattice so that Ni-O-Ti bonds were formed.Photoluminescence (PL), time-resolved PL, UV-visible diffuse reflectance spectra (UV-visible DRS) and X-ray photoelectron spectroscopy (XPS) analyses were also conducted to investigate the charge transfer and reaction mechanisms on the sample surface.The incorporation of Ni into TiO2 resulted in a weaker PL intensity than that of bare TiO2, which suggests that the introduction of Ni into TiO2 effectively suppressed the undesirable recombination of electrons and holes.According to UV-visible DRS results, the Eg of PT is approximately 3.07 eV, which is smaller than that of ST (Eg=3.23 eV) and PT (Eg=3.20 eV).The narrower band gap of NT indicates that NT absorbed light with a wider wavelength range than that absorbed by ST and PT.By XPS patterns, the increase of Ni+/0 and Ti3+ indicated that the VO may have been produced on the bond of Ni-O-Ti after UV illumination, and oxygen vacancies (VO) have been consumed after thermal step in PTC.Density functional theory (DFT) calculations related to the anatase (101) surface of TiO2 and Ni doped TiO2 was performed to verify and provide guidance for enhancing the PTC mechanism.Single and second VO formation energy have been calculated.The Ni-doped surface exhibits better performance than the undoped surface in the first step in PTC, because of its lower VO formation energy which produce more VO sites.Density of states (DOS) and partial density of states (PDOS) results indicated that narrow energy gap and impurity energy level of Ni-doped TiO2 may lead to a wider wavelength range of NT.As a result, several key factors of the mechanism have been clarified.
  • 加载中
    1. [1]

      Grob, G. R. Appl. Energ. 2003, 76, 39.  doi: 10.1016/S0306-2619(03)00045-X

    2. [2]

      Song, C. Catal. Today 2006, 115, 2.  doi: 10.1016/j.cattod.2006.02.029

    3. [3]

      Olah, G. A.; Prakash, G. K.; Goeppert, A. J. Am. Chem. Soc. 2011, 133, 12881.  doi: 10.1021/ja202642y

    4. [4]

      Yuan, Q.; Chen, X.; Wang, J.; Zhai, J. Acta Chim. Sinica 2014, 72, 624.
       

    5. [5]

      Zhong, J.; Meng, Q.; Chen, B.; Tong, Z.; Wu, L. Acta Chim. Sinica 2017, 75, 34.  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    6. [6]

      Ying, Z.; Zhang, Y.; Xu, S.; Zhou, J.; Liu, J.; Wang, Z.; Cen, K. Int. J. Hydrogen Energ. 2014, 39, 18727.  doi: 10.1016/j.ijhydene.2014.09.039

    7. [7]

      Agrafiotis, C.; Roeb, M.; Sattler, C. Renew. Sust. Energ. Rev. 2015, 42, 254.  doi: 10.1016/j.rser.2014.09.039

    8. [8]

      Yu, W.; Xu, Difa.; Peng, T. J. Mater. Chem. A 2015, 3, 19936.  doi: 10.1039/C5TA05503B

    9. [9]

      Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Acta Chim. Sinica 2016, 74, 523.
       

    10. [10]

      Fletcher, E. A. J. Sol. Energ. 2001, 123, 63.  doi: 10.1115/1.1349552

    11. [11]

      William, C. C.; Christoph, F.; Mandy, A.; Danien, S.; Philipp, F.; Sossina, M. H.; Aldo, S. Science 2010, 330, 1797.  doi: 10.1126/science.1197834

    12. [12]

      Furler, P.; Scheffe, J. R.; Steinfeld, A. Energ. Environ. Sci. 2012, 5, 6098.  doi: 10.1039/C1EE02620H

    13. [13]

      Romero, M.; Steinfeld, A. Energ. Environ. Sci. 2012, 5, 9234.  doi: 10.1039/c2ee21275g

    14. [14]

      Arifin, D.; Aston, V. J.; Liang, X.; McDaniel, A. H.; Weimer, A. W. Energ. Environ. Sci. 2012, 5, 9438.  doi: 10.1039/c2ee22090c

    15. [15]

      Le Gal, A.; Abanades, S.; Flamant, G. Energ. Fuel. 2011, 25, 4836.  doi: 10.1021/ef200972r

    16. [16]

      Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41.  doi: 10.7503/cjcu20160643
       

    17. [17]

      Feng, B.; Muhammad, F, E.; Wei L.; Tao, H. Chin. J. Chem. 2015, 33, 112.  doi: 10.1002/cjoc.v33.1

    18. [18]

      Sun, D.; Li, Z. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.v35.2

    19. [19]

      Zhang, Y.; Xu, C.; Chen, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. Appl. Energ. 2015, 156, 223.  doi: 10.1016/j.apenergy.2015.07.028

    20. [20]

      Zhang, Y.; Chen, J.; Xu, C.; Zhou, K.; Wang, Z.; Zhou, J.; Cen, K. Int. J. Hydrogen Energ. 2016, 41, 2215.  doi: 10.1016/j.ijhydene.2015.12.067

    21. [21]

      Xu, C.; Zhang, Y.; Chen, J.; Lin, J.; Zhang, X.; Wang, Z.; Zhou, J. Appl. Catal. B-Environ. 2017, 204, 324.  doi: 10.1016/j.apcatb.2016.11.027

    22. [22]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37.  doi: 10.1038/238037a0

    23. [23]

      He, Z.; Tang, J.; Shen, J.; Chen, J.; Song, S. Appl. Surf. Sci. 2016, 364, 416.  doi: 10.1016/j.apsusc.2015.12.163

    24. [24]

      Low, J.; Cheng, B.; Yu, J. Appl. Surf. Sci. 2017, 392, 658.  doi: 10.1016/j.apsusc.2016.09.093

    25. [25]

      Mei, T.; Harshkumar, H. P.; Matthew, S. S. Nature 2014, 508, 340.  doi: 10.1038/nature13231

    26. [26]

      Jiao, K.; Zhao, C.; Fang, P.; Mei, T. Tetrahedron Lett. 2017, 58, 797.  doi: 10.1016/j.tetlet.2016.12.065

    27. [27]

      Liu, X.; Liu, J.; Zhang, S.; Nan, Z.; Shi, Q. J. Phys. Chem. C 2016, 120, 1328.  doi: 10.1021/acs.jpcc.5b10618

    28. [28]

      Chang, S.-M.; Liu, W.-S. Appl. Catal. B-Environ. 2014, 466, 156.
       

    29. [29]

      Li, A.; Li, J.; Liu, Y.; Zhang, J.; Zhao, L.; Lu, Y. Acta Chim. Sinica 2013, 71, 815.
       

    30. [30]

      Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G. I. N. J. Catal. 2015, 326, 43.  doi: 10.1016/j.jcat.2015.03.008

    31. [31]

      Lin, X.; Lin, L.; Huang, K.; Chen, X.; Dai, W.; Fu, X. Appl. Catal. B-Environ. 2015, 416, 168.
       

    32. [32]

      Liu, Y.; Wang, Z.; Fan, W.; Geng, Z.; Feng, L. Ceram. Int. 2014, 40, 3887.  doi: 10.1016/j.ceramint.2013.08.030

    33. [33]

      Do, J. Y.; Kwak, B. S.; Park, S.-M.; Kang, M. Int. J. Photoenergy 2016, 1.
       

    34. [34]

      Shimoda, N.; Shoji, D.; Tani, K.; Fujiwara, M.; Urasaki, K.; Kikuchi, R.; Satokawa, S. A. Appl. Catal. B-Environ. 2015, 486, 174.

    35. [35]

      Kho, E. T.; Scott, J.; Amal, R. Chem. Eng. Sci. 2016, 140, 161.  doi: 10.1016/j.ces.2015.10.021

    36. [36]

      Lai, L.-L.; Wen, W.; Wu, J.-M. RSC Adv. 2016, 6, 25511.  doi: 10.1039/C6RA01752E

    37. [37]

      Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. J. Catal. 2001, 203, 82.  doi: 10.1006/jcat.2001.3316

    38. [38]

      Zhang, Y.; Chen, J.; Li, X. Catal. Lett. 2010, 139, 129.  doi: 10.1007/s10562-010-0425-x

    39. [39]

      Yuan, J.; Wu, Q.; Zhang, P.; Yao, J.; He, T.; Cao, Y. Environ. Sci. Technol. 2012, 46, 2330.  doi: 10.1021/es203333k

    40. [40]

      Yan, Y.; Yu, Y.; Huang, S.; Yang, Y.; Yang, X.; Yin, S.; Cao, Y. J. Phys. Chem. C 2017, 121, 1089.  doi: 10.1021/acs.jpcc.6b07180

    41. [41]

      Cui, E.; Lu, G. Int. J. Hydrogen Energ. 2014, 39, 8959.  doi: 10.1016/j.ijhydene.2014.03.258

    42. [42]

      Kumar, V. V.; Naresh, G.; Deepa, S.; Bhavani, P. G.; Nagaraju, M.; Sudhakar, M.; Chary, K. V. R.; Tardio, J.; Bhargava, S. K.; Venugopal, A. Appl. Catal. A-Gen. 2017, 531, 169.  doi: 10.1016/j.apcata.2016.10.032

    43. [43]

      Liu, Q.; Ding, D.; Ning, C.; Wang, X. Int. J. Hydrogen Energ. 2015, 40, 2107.  doi: 10.1016/j.ijhydene.2014.12.064

    44. [44]

      Kim, D. H.; Kim, S. Y.; Han, S. W.; Cho, Y. K.; Jeong, M.-G.; Park, E. J.; Kim, Y. D. Appl. Catal. A-Gen. 2015, 495, 184.  doi: 10.1016/j.apcata.2015.02.015

    45. [45]

      Gao, M.; Jiang, D.; Sun, D.; Hou, B.; Li, D. Acta Chim. Sinica 2014, 72, 1092.
       

    46. [46]

      Lin, C.-K.; Chuang, C.-C.; Raghunath, P.; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C. Chem. Phys. Lett. 2017, 667, 278.  doi: 10.1016/j.cplett.2016.10.082

    47. [47]

      Chen, Q. L.; Li, B.; Zheng, G.; He, K. H.; Zheng, A. S. Physica B 2011, 406, 3841  doi: 10.1016/j.physb.2011.07.007

    48. [48]

      Ma, J.; He, H.; Liu, F. Appl. Catal. B-Environ. 2015, 179, 21.  doi: 10.1016/j.apcatb.2015.05.003

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(13)
  • Abstract views(2311)
  • HTML views(323)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return