Citation: Xu Jiawei, Zhang Chong, Wang Xunchang, Jiang Jiaxing, Wang Feng. Synthesis and Gas Sorption Properties of Microporous Poly(arylene ethynylene) Frameworks[J]. Acta Chimica Sinica, ;2017, 75(5): 473-478. doi: 10.6023/A17020068 shu

Synthesis and Gas Sorption Properties of Microporous Poly(arylene ethynylene) Frameworks

  • Corresponding author: Jiang Jiaxing, jiaxing@snnu.edu.cn Wang Feng, psfwang@wit.edu.cn
  • Received Date: 17 February 2017

    Fund Project: the Education Ministry of China NCET-12-0714the the Natural Science Foundation of China 51103111

Figures(6)

  • Microporous organic polymers (MOPs) have drawn much attention because of their potential applications such as gas storage, separation and heterogeneous catalysis. There is great interest in the design, synthesis and property evaluation of poly(arylene ethynylenes) (PAEs) with intrinsic microporosity. In addition to Sonogashira coupling reaction between terminal alkynes and halides, the oxidative dimerization of terminal alkynes is an alternating strategy for the buildup of the microporous PAE frameworks. In this paper, a series of MOPs were synthesized by the oxidative dimerization of terminal alkynes using triethynyl monomers such as tris(4-ethynylphenyl)amine, tris(4-ethynylphenyl)methylsilane and polytris(4-ethynylphenyl)phenylsilane. The resulting MOPs were characterized by FT-IR spectra, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) measurements. FT-IR spectra indicate the success of the homocoupling reaction for constructing the dialkyne-bridged polymer frameworks. These polymer frameworks exhibit high thermal stability with onset of decomposition temperature above 350 ℃ at 5% mass loss under nitrogen flow. PXRD and TEM measurements revealed that all the polymer frameworks are amorphous solid in nature. These dialkyne-bridged MOPs exhibit moderate surface areas ranging from 602 to 715 m2·g-1. The incorporation of triphenylamine moieties into the polymer skeleton increases the number of electron donating basic nitrogen sites in the porous frameworks. Thus, the triphenylamine-based polymer polytris(4-ethynylphenyl)amine (TEPA-MOP) with the highest Brunauer-Emmett-Teller (BET) surface area shows the highest CO2 uptake capacity of 1.59 mmol·g-1 at 273 K and 1.13 bar among the resulting polymer frameworks. In addition, TEPA-MOP showed the highest H2 adsorption up to 1.04 wt% at 1.13 bar and 77 K and polytris(4-ethynylphenyl)phenylsilane (TEPP-MOP) displayed the lowest H2 adsorption of 0.64 wt% at the same conditions. As for separation of CO2, both TEPA-MOP and TEPP-MOP exhibit relatively high CO2-over-N2 selectivities of 69.9 and 73.2 at 273 K, respectively. The above results show that TEPA-MOP might be the good candidate for the balanced CO2 uptake capacity with impressive CO2/N2 selectivity among the microporous PAE frameworks.
  • 加载中
    1. [1]

      Monastersky, R. Nature 2013, 497, 13.  doi: 10.1038/497013a

    2. [2]

      Wu, Z. K.; Huang, Z. L.; Zhang, Y.; Qin, Y. H.; Ma, J. Y.; Luo, Y. B. Chem. Eng. J. 2016, 295, 64.  doi: 10.1016/j.cej.2016.03.030

    3. [3]

      Wang, T. L.; Jens, K. J. Int. J. Greenh. Gas Con. 2015, 37, 354.  doi: 10.1016/j.ijggc.2015.03.017

    4. [4]

      Luo, C.; Zheng, Y.; Guo, J.; Feng, B. Fuel 2014, 127, 124.  doi: 10.1016/j.fuel.2013.09.063

    5. [5]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.  doi: 10.1016/j.progpolymsci.2011.09.002

    6. [6]

      Tan, L. X.; Tan, B. Chem. Soc. Rev. 2017, DOI: 10.1039/ c6cs00851h.  doi: 10.1039/c6cs00851h

    7. [7]

      Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Chem. Rev. 2017, 117, 1515.  doi: 10.1021/acs.chemrev.6b00439

    8. [8]

      Cooper, A. I. Adv. Mater. 2009, 21, 1291.  doi: 10.1002/adma.v21:12

    9. [9]

      Jiang, J. X.; Cooper, A. I. Top. Curr. Chem. 2010. 293, 1.

    10. [10]

      Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.  doi: 10.1039/c3cs60160a

    11. [11]

      Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Chem. Commun. 2004, 230.

    12. [12]

      McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.  doi: 10.1021/ma1006396

    13. [13]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    14. [14]

      Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.

    15. [15]

      Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    16. [16]

      Tan, L. X.; Tan, B. Acta Chim. Sinica 2015, 73, 530.  doi: 10.3969/j.issn.0253-2409.2015.05.003
       

    17. [17]

      Xu, S. J.; Luo, Y. L.; Tan, B. Macromol. Rapid. Commun. 2013, 34, 471.  doi: 10.1002/marc.v34.6

    18. [18]

      Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.  doi: 10.1002/adma.v24.42

    19. [19]

      Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.  doi: 10.1002/adma.201200751

    20. [20]

      Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S. Angew. Chem., Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    21. [21]

      Yuan, Y.; Yan, Z. J.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sinica 2012, 70, 1446.
       

    22. [22]

      Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H. J.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    23. [23]

      Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 7710.  doi: 10.1021/ja8010176

    24. [24]

      Jiang, J. X.; Su, F. B.; Niu, H. J.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Chem. Commun. 2008, 486.

    25. [25]

      Jiang, J. X.; Trewin, A.; Su, F. B.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. Macromolecules 2009, 42, 2658.  doi: 10.1021/ma802625d

    26. [26]

      Ma, H. P.; Ren, H.; Zou, X. Q.; Sun, F. X.; Yan, Z. J.; Cai, K.; Wang, D. Y.; Zhu, G. S. J. Mater. Chem. A 2013, 1, 752.  doi: 10.1039/C2TA00616B

    27. [27]

      Yuan, R. R.; Ren, H.; Yan, Z. J.; Wang, A. F.; Zhu, G. S. Polym. Chem. 2014, 5, 2266.  doi: 10.1039/c3py01252b

    28. [28]

      Yan, Z. J.; Yuan, Y.; Tian, Y. Y.; Zhang, D. M.; Zhu, G. S. Angew. Chem., Int. Ed. 2015, 54, 12733.  doi: 10.1002/anie.201503362

    29. [29]

      Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Polym. Chem. 2014, 5, 144.  doi: 10.1039/C3PY00647F

    30. [30]

      Yang, Z. Z.; Zhao, Y. F.; Zhang, H. Y.; Yu, B.; Ma, Z. S.; Ji, G. P.; Liu, Z. M. Chem. Commun. 2014, 50, 13910.  doi: 10.1039/C4CC06423B

    31. [31]

      Thompson, C. M.; McCandless, G. T.; Wijenayake, S. N.; Alfarawati, O.; Jahangiri, M.; Kokash, A.; Tran, Z.; Smaldone, R. A. Macromolecules 2014, 47, 8645.  doi: 10.1021/ma501663j

    32. [32]

      Thompson, C. M.; Li, F.; Smaldone, R. A. Chem. Commun. 2014, 50, 6171.  doi: 10.1039/c4cc02213k

    33. [33]

      Trunk, M.; Herrmann, A.; Bildirir, H.; Yassin, A.; Schmidt, J.; Thomas, A. Chem. Eur. J. 2016, 22, 7179.  doi: 10.1002/chem.201600783

    34. [34]

      Yan, Z. J.; Ren, H.; Ma, H. P.; Yuan, R. R.; Yuan, Y.; Zou, X. Q.; Sun, F. X.; Zhu, G. S. Microporous Mesoporous Mater. 2013, 173, 92.  doi: 10.1016/j.micromeso.2013.02.006

    35. [35]

      Chen, Q.; Wang, J. X.; Wang, Q.; Bian, N.; Li, Z. H.; Yan, C. G.; Han, B. H. Macromolecules 2011, 44, 7987.  doi: 10.1021/ma201626s

    36. [36]

      Ma, Q. Y.; Yang, B. X.; Li, J. Q. RSC Adv. 2015, 5, 64163.  doi: 10.1039/C5RA11359H

    37. [37]

      Qiao, S. L.; Du, Z. K.; Yang, C. P.; Zhou, Y. H.; Zhu, D. Q.; Wang, J. X.; Chen, X. H.; Yang, R. Q. Polymer 2014, 55, 1177.  doi: 10.1016/j.polymer.2014.01.029

    38. [38]

      Qiao, S. L.; Huang, W.; Du, Z. K.; Chen, X. H.; Shieh, F. K.; Yang, R. Q. New J. Chem. 2014, 39, 136.

    39. [39]

      Ma, B. C.; Ghasimi, S.; Landfester, K.; Vilela, F.; Zhang, K. A. I. J. Mater. Chem. A 2015, 3, 16064.  doi: 10.1039/C5TA03820K

    40. [40]

      Zhang, T. T.; Wang, H. T.; Ma, H. P.; Sun, F. X.; Cui, X. Q.; Zhu, G. S. Acta Chim. Sinica 2013, 71, 1598.  doi: 10.7503/cjcu20130173
       

    41. [41]

      Zhang, H. J.; Zhang, C.; Wang, X. C.; Qiu, Z. X.; Liang, X. M.; Chen, B.; Xu, J. W.; Jiang, J. X.; Li, Y. D.; Li, H.; Wang, F. RSC Adv. 2016, 6, 113826.  doi: 10.1039/C6RA20765K

    42. [42]

      Lu, W. G.; Yuan, D. Q.; Zhao, D.; Schilling, C. I.; Plietzsch, O.; Muller, T.; Brase, S.; Guenther, J.; Blumel, J.; Krishna, R.; Li, Z.; Zhou, H. C. Chem. Mater. 2010, 22, 5964.  doi: 10.1021/cm1021068

    43. [43]

      Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H. C. Chem. Mater. 2014, 26, 4589.  doi: 10.1021/cm501922h

    44. [44]

      Wu, K. Y.; Guo, J.; Wang, C. C. Chem. Commun. 2014, 50, 695.  doi: 10.1039/C3CC47234E

    45. [45]

      Cao, Q.; Chen, Q.; Han, B. H. Acta Chim. Sinica 2015, 73, 541.
       

    46. [46]

      Zhang, Y. H.; Li, Y. D.; Wang, F.; Zhao, Y.; Zhang, C.; Wang, X. Y.; Jiang, J. X. Polymer 2014, 55, 5746.  doi: 10.1016/j.polymer.2014.09.014

    47. [47]

      Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J. X. Carbon 2017, 114, 608.  doi: 10.1016/j.carbon.2016.12.064

    48. [48]

      Zhao, Y.; Wang, X. Y.; Zhang, C.; Jiang, J. X. Acta Chim. Sinica 2015, 73, 634.
       

    49. [49]

      Zhang, X.; Lu, J. Z.; Zhang, J. Chem. Mater. 2014, 26, 4023.  doi: 10.1021/cm501717c

    50. [50]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62, 345.

    51. [51]

      Yao, S. W.; Yang, X.; Yu, M.; Zhang, Y. H.; Jiang, J. X. J. Mater. Chem. A 2014, 2, 8054.  doi: 10.1039/c4ta00375f

    52. [52]

      Patel, H. A.; Je, S. H.; Park, J.; Jung, Y.; Coskun, A.; Yavuz, C. T. Chem. Eur. J. 2014, 20, 772.  doi: 10.1002/chem.v20.3

    53. [53]

      Mohanty, P.; Kull, L. D.; Landskron, K. Nat. Commun. 2011, 2, 401.  doi: 10.1038/ncomms1405

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(2)
  • Abstract views(622)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return