Citation: Xu Jiawei, Zhang Chong, Wang Xunchang, Jiang Jiaxing, Wang Feng. Synthesis and Gas Sorption Properties of Microporous Poly(arylene ethynylene) Frameworks[J]. Acta Chimica Sinica, ;2017, 75(5): 473-478. doi: 10.6023/A17020068 shu

Synthesis and Gas Sorption Properties of Microporous Poly(arylene ethynylene) Frameworks

  • Corresponding author: Jiang Jiaxing, jiaxing@snnu.edu.cn Wang Feng, psfwang@wit.edu.cn
  • Received Date: 17 February 2017

    Fund Project: the Education Ministry of China NCET-12-0714the the Natural Science Foundation of China 51103111

Figures(6)

  • Microporous organic polymers (MOPs) have drawn much attention because of their potential applications such as gas storage, separation and heterogeneous catalysis. There is great interest in the design, synthesis and property evaluation of poly(arylene ethynylenes) (PAEs) with intrinsic microporosity. In addition to Sonogashira coupling reaction between terminal alkynes and halides, the oxidative dimerization of terminal alkynes is an alternating strategy for the buildup of the microporous PAE frameworks. In this paper, a series of MOPs were synthesized by the oxidative dimerization of terminal alkynes using triethynyl monomers such as tris(4-ethynylphenyl)amine, tris(4-ethynylphenyl)methylsilane and polytris(4-ethynylphenyl)phenylsilane. The resulting MOPs were characterized by FT-IR spectra, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) measurements. FT-IR spectra indicate the success of the homocoupling reaction for constructing the dialkyne-bridged polymer frameworks. These polymer frameworks exhibit high thermal stability with onset of decomposition temperature above 350 ℃ at 5% mass loss under nitrogen flow. PXRD and TEM measurements revealed that all the polymer frameworks are amorphous solid in nature. These dialkyne-bridged MOPs exhibit moderate surface areas ranging from 602 to 715 m2·g-1. The incorporation of triphenylamine moieties into the polymer skeleton increases the number of electron donating basic nitrogen sites in the porous frameworks. Thus, the triphenylamine-based polymer polytris(4-ethynylphenyl)amine (TEPA-MOP) with the highest Brunauer-Emmett-Teller (BET) surface area shows the highest CO2 uptake capacity of 1.59 mmol·g-1 at 273 K and 1.13 bar among the resulting polymer frameworks. In addition, TEPA-MOP showed the highest H2 adsorption up to 1.04 wt% at 1.13 bar and 77 K and polytris(4-ethynylphenyl)phenylsilane (TEPP-MOP) displayed the lowest H2 adsorption of 0.64 wt% at the same conditions. As for separation of CO2, both TEPA-MOP and TEPP-MOP exhibit relatively high CO2-over-N2 selectivities of 69.9 and 73.2 at 273 K, respectively. The above results show that TEPA-MOP might be the good candidate for the balanced CO2 uptake capacity with impressive CO2/N2 selectivity among the microporous PAE frameworks.
  • 加载中
    1. [1]

      Monastersky, R. Nature 2013, 497, 13.  doi: 10.1038/497013a

    2. [2]

      Wu, Z. K.; Huang, Z. L.; Zhang, Y.; Qin, Y. H.; Ma, J. Y.; Luo, Y. B. Chem. Eng. J. 2016, 295, 64.  doi: 10.1016/j.cej.2016.03.030

    3. [3]

      Wang, T. L.; Jens, K. J. Int. J. Greenh. Gas Con. 2015, 37, 354.  doi: 10.1016/j.ijggc.2015.03.017

    4. [4]

      Luo, C.; Zheng, Y.; Guo, J.; Feng, B. Fuel 2014, 127, 124.  doi: 10.1016/j.fuel.2013.09.063

    5. [5]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.  doi: 10.1016/j.progpolymsci.2011.09.002

    6. [6]

      Tan, L. X.; Tan, B. Chem. Soc. Rev. 2017, DOI: 10.1039/ c6cs00851h.  doi: 10.1039/c6cs00851h

    7. [7]

      Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Chem. Rev. 2017, 117, 1515.  doi: 10.1021/acs.chemrev.6b00439

    8. [8]

      Cooper, A. I. Adv. Mater. 2009, 21, 1291.  doi: 10.1002/adma.v21:12

    9. [9]

      Jiang, J. X.; Cooper, A. I. Top. Curr. Chem. 2010. 293, 1.

    10. [10]

      Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.  doi: 10.1039/c3cs60160a

    11. [11]

      Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Chem. Commun. 2004, 230.

    12. [12]

      McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.  doi: 10.1021/ma1006396

    13. [13]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    14. [14]

      Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.

    15. [15]

      Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    16. [16]

      Tan, L. X.; Tan, B. Acta Chim. Sinica 2015, 73, 530.  doi: 10.3969/j.issn.0253-2409.2015.05.003
       

    17. [17]

      Xu, S. J.; Luo, Y. L.; Tan, B. Macromol. Rapid. Commun. 2013, 34, 471.  doi: 10.1002/marc.v34.6

    18. [18]

      Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24, 5703.  doi: 10.1002/adma.v24.42

    19. [19]

      Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.  doi: 10.1002/adma.201200751

    20. [20]

      Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S. Angew. Chem., Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    21. [21]

      Yuan, Y.; Yan, Z. J.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sinica 2012, 70, 1446.
       

    22. [22]

      Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H. J.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    23. [23]

      Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 7710.  doi: 10.1021/ja8010176

    24. [24]

      Jiang, J. X.; Su, F. B.; Niu, H. J.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Chem. Commun. 2008, 486.

    25. [25]

      Jiang, J. X.; Trewin, A.; Su, F. B.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. Macromolecules 2009, 42, 2658.  doi: 10.1021/ma802625d

    26. [26]

      Ma, H. P.; Ren, H.; Zou, X. Q.; Sun, F. X.; Yan, Z. J.; Cai, K.; Wang, D. Y.; Zhu, G. S. J. Mater. Chem. A 2013, 1, 752.  doi: 10.1039/C2TA00616B

    27. [27]

      Yuan, R. R.; Ren, H.; Yan, Z. J.; Wang, A. F.; Zhu, G. S. Polym. Chem. 2014, 5, 2266.  doi: 10.1039/c3py01252b

    28. [28]

      Yan, Z. J.; Yuan, Y.; Tian, Y. Y.; Zhang, D. M.; Zhu, G. S. Angew. Chem., Int. Ed. 2015, 54, 12733.  doi: 10.1002/anie.201503362

    29. [29]

      Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Polym. Chem. 2014, 5, 144.  doi: 10.1039/C3PY00647F

    30. [30]

      Yang, Z. Z.; Zhao, Y. F.; Zhang, H. Y.; Yu, B.; Ma, Z. S.; Ji, G. P.; Liu, Z. M. Chem. Commun. 2014, 50, 13910.  doi: 10.1039/C4CC06423B

    31. [31]

      Thompson, C. M.; McCandless, G. T.; Wijenayake, S. N.; Alfarawati, O.; Jahangiri, M.; Kokash, A.; Tran, Z.; Smaldone, R. A. Macromolecules 2014, 47, 8645.  doi: 10.1021/ma501663j

    32. [32]

      Thompson, C. M.; Li, F.; Smaldone, R. A. Chem. Commun. 2014, 50, 6171.  doi: 10.1039/c4cc02213k

    33. [33]

      Trunk, M.; Herrmann, A.; Bildirir, H.; Yassin, A.; Schmidt, J.; Thomas, A. Chem. Eur. J. 2016, 22, 7179.  doi: 10.1002/chem.201600783

    34. [34]

      Yan, Z. J.; Ren, H.; Ma, H. P.; Yuan, R. R.; Yuan, Y.; Zou, X. Q.; Sun, F. X.; Zhu, G. S. Microporous Mesoporous Mater. 2013, 173, 92.  doi: 10.1016/j.micromeso.2013.02.006

    35. [35]

      Chen, Q.; Wang, J. X.; Wang, Q.; Bian, N.; Li, Z. H.; Yan, C. G.; Han, B. H. Macromolecules 2011, 44, 7987.  doi: 10.1021/ma201626s

    36. [36]

      Ma, Q. Y.; Yang, B. X.; Li, J. Q. RSC Adv. 2015, 5, 64163.  doi: 10.1039/C5RA11359H

    37. [37]

      Qiao, S. L.; Du, Z. K.; Yang, C. P.; Zhou, Y. H.; Zhu, D. Q.; Wang, J. X.; Chen, X. H.; Yang, R. Q. Polymer 2014, 55, 1177.  doi: 10.1016/j.polymer.2014.01.029

    38. [38]

      Qiao, S. L.; Huang, W.; Du, Z. K.; Chen, X. H.; Shieh, F. K.; Yang, R. Q. New J. Chem. 2014, 39, 136.

    39. [39]

      Ma, B. C.; Ghasimi, S.; Landfester, K.; Vilela, F.; Zhang, K. A. I. J. Mater. Chem. A 2015, 3, 16064.  doi: 10.1039/C5TA03820K

    40. [40]

      Zhang, T. T.; Wang, H. T.; Ma, H. P.; Sun, F. X.; Cui, X. Q.; Zhu, G. S. Acta Chim. Sinica 2013, 71, 1598.  doi: 10.7503/cjcu20130173
       

    41. [41]

      Zhang, H. J.; Zhang, C.; Wang, X. C.; Qiu, Z. X.; Liang, X. M.; Chen, B.; Xu, J. W.; Jiang, J. X.; Li, Y. D.; Li, H.; Wang, F. RSC Adv. 2016, 6, 113826.  doi: 10.1039/C6RA20765K

    42. [42]

      Lu, W. G.; Yuan, D. Q.; Zhao, D.; Schilling, C. I.; Plietzsch, O.; Muller, T.; Brase, S.; Guenther, J.; Blumel, J.; Krishna, R.; Li, Z.; Zhou, H. C. Chem. Mater. 2010, 22, 5964.  doi: 10.1021/cm1021068

    43. [43]

      Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H. C. Chem. Mater. 2014, 26, 4589.  doi: 10.1021/cm501922h

    44. [44]

      Wu, K. Y.; Guo, J.; Wang, C. C. Chem. Commun. 2014, 50, 695.  doi: 10.1039/C3CC47234E

    45. [45]

      Cao, Q.; Chen, Q.; Han, B. H. Acta Chim. Sinica 2015, 73, 541.
       

    46. [46]

      Zhang, Y. H.; Li, Y. D.; Wang, F.; Zhao, Y.; Zhang, C.; Wang, X. Y.; Jiang, J. X. Polymer 2014, 55, 5746.  doi: 10.1016/j.polymer.2014.09.014

    47. [47]

      Zhang, C.; Kong, R.; Wang, X.; Xu, Y. F.; Wang, F.; Ren, W. F.; Wang, Y. H.; Su, F. B.; Jiang, J. X. Carbon 2017, 114, 608.  doi: 10.1016/j.carbon.2016.12.064

    48. [48]

      Zhao, Y.; Wang, X. Y.; Zhang, C.; Jiang, J. X. Acta Chim. Sinica 2015, 73, 634.
       

    49. [49]

      Zhang, X.; Lu, J. Z.; Zhang, J. Chem. Mater. 2014, 26, 4023.  doi: 10.1021/cm501717c

    50. [50]

      Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62, 345.

    51. [51]

      Yao, S. W.; Yang, X.; Yu, M.; Zhang, Y. H.; Jiang, J. X. J. Mater. Chem. A 2014, 2, 8054.  doi: 10.1039/c4ta00375f

    52. [52]

      Patel, H. A.; Je, S. H.; Park, J.; Jung, Y.; Coskun, A.; Yavuz, C. T. Chem. Eur. J. 2014, 20, 772.  doi: 10.1002/chem.v20.3

    53. [53]

      Mohanty, P.; Kull, L. D.; Landskron, K. Nat. Commun. 2011, 2, 401.  doi: 10.1038/ncomms1405

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(2)
  • Abstract views(655)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return