Citation: Cheng Pengfei, Wang Ying, Cheng Kuan, Li Fangbai, Qin Haoli, Liu Tongxu. The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model[J]. Acta Chimica Sinica, ;2017, 75(6): 637-644. doi: 10.6023/A17020056 shu

The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model

  • Corresponding author: Liu Tongxu, txliu@soil.gd.cn
  • Received Date: 15 February 2017

    Fund Project: the "973" Program 2014CB441002the National Natural Science Foundation of China 41571130052

Figures(8)

  • Iron oxides and kaolinite are the main sources of variable charges in the red soil. As a result of being protonated and deprotonated under different acid-base conditions, the surface hydroxyl groups can buffer the pH changes of red soil. In this study, iron oxide and kaolinite were titrated by the standard HCl and NaOH solution through the auto potentiometric titration under the controlled pH=2.9~9.5, to study the surface charge of soil minerals. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and N2 desorption/adsorption isotherms (BET) were used to characterize the crystal structures, surface groups and specific surface areas of soil minerals. Based on the characterization data and titration curves, the acid-base properties of the minerals were analyzed by using 1-site/2-pK surface complexation model. The Gran plot method, commonly used to determine the equivalence points, was applied to calculate the concentration (Hs) and density (Ds) of the surface active sites on the soil minerals. The acid-base equilibrium constants (pKaint) of soil minerals were obtained by extrapolation and the corresponding pHpzc were calculated by the following formula:pHpzc=1/2 (pKa1int+pKa2int). The result of calculated value of pHpzc was nearly equal with the experimental value, which showed that it is feasible to apply this model calculation method on the soil minerals. In addition, the above parameters can explain the acid-base buffer capacity of the minerals quantitatively. The results show that goethite and kaolinite have the higher surface active site concentration. According to the parameters, the surface chemical speciation of minerals at different pH were calculated by Visual Minteq software with the double layer model (DLM) to explain the mechanism of acid-base buffer behavior on the mineral surfaces. Finally, the acid-base titration method and model calculation approach were also used to analyze the acid-base buffer capacity of the natural red soil samples. The feasibility of this method on the red soil was further verified. Then, the surface chemical species (≡SOH2+, ≡SO- and ≡SOH) of the red soil were calculated by surface complex model to further explain their acid-base buffer mechanism.
  • 加载中
    1. [1]

      Li, Q. K. Chinese Red Soil, Vol. 1~2, Eds.:Zhao, Q. G.; Shi, H.; Gong, Z. T., Science Press, Beijing, 1983, p. 1(in Chinese).

    2. [2]

      Xiong, Y.; Li, Q. K. Chinese Soil, Science Press, Beijing, 1990, pp. 502~508(in Chinese).

    3. [3]

      Brown, K. A. Water, Air, Soil Pollut. 1987, 32, 201.
       

    4. [4]

      Liao, B.; Guo, Z.; Zeng, Q.; Probst, A.; Probst, J. Water, Air, Soil Pollut.:Focus 2007, 7, 151.  doi: 10.1007/s11267-006-9077-7

    5. [5]

      Fu, L.; Wu, J.; Yang, Y.; Qiu, L. Environ. Sci. 1993, 14(1), 20(in Chinese).
       

    6. [6]

      Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J. Environ. Sci. Technol. 2009, 43, 8021.  doi: 10.1021/es901430n

    7. [7]

      Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S. Science 2010, 327, 1008.  doi: 10.1126/science.1182570

    8. [8]

      Liao, B. H.; Dai, Z. H. Acta Sci. Circumstantiae 1991, 11, 425(in Chinese).
       

    9. [9]

      Reuss, J.; Cosby, B.; Wright, R. Nature 1987, 329, 27.  doi: 10.1038/329027a0

    10. [10]

      Wright, R.; Cosby, B.; Flaten, M.; Reuss, J. Nature 1990, 343, 53.  doi: 10.1038/343053a0

    11. [11]

      Larssen, T.; Schnoor, J. L.; Seip, H. M.; Dawei, Z. Sci. Total Environ. 2000, 246, 175.  doi: 10.1016/S0048-9697(99)00457-X

    12. [12]

      Li, J. Y.; Wang, N.; Xu, R. K. Soils 2009, 41, 932(in Chinese).  doi: 10.3321/j.issn:0253-9829.2009.06.015

    13. [13]

      Xu, R. K. Soils 2015, 47, 238(in Chinese).
       

    14. [14]

      Alekseeva, T.; Alekseev, A.; Xu, R. K.; Zhao, A. Z.; Kalinin, P. Environ. Geochem. Health 2011, 33, 137.  doi: 10.1007/s10653-010-9327-5

    15. [15]

      Dixon, J. B.; Weed, S. B.; Dinauer, R. C. Minerals in Soil Environments, 2nd ed., Eds.:Barnhisel, R. I.; Bertsch, P. M., SSSA, USA, 1989, Chapter 15, p. 729.

    16. [16]

      Yu, T. R.; Chen, Z. C. The Chemical Process in the Soil, Vol. 14, Ed.:Chen, Z. C., Science Press, Beijing, 1990, p. 432(in Chinese).

    17. [17]

      Yu, T. R.; Wang, Z. Q. Soil Analytical Chemistry, Vol. 11, Eds.:Chen, J. F.; He, Q., Science Press, Beijing, 1987, p. 337(in Chinese).

    18. [18]

      Wang, X. G.; Li, F. B. Persistent Organic Pollutants Forum and National Symposium on Persistent Organic Pollutants, Eds.:Yu, G.; Huang, J.; Wang, B.; Liu, Y. C., Chinese Chemical Society, Beijing, 2006, pp. 215~223(in Chinese).

    19. [19]

      Wang, X. G.; Sun, L. R.; Zeng, F.; Li, F. B. Res. Environ. Sci. 2009, 22(4), 60(in Chinese).
       

    20. [20]

      Gao, S.; He, G. P.; Wu, H. H.; Sun, W. Y. Acta Petrol. Mineral. 2005, 24, 239(in Chinese).  doi: 10.3969/j.issn.1000-6524.2005.03.010

    21. [21]

      Gao, Y.; Mucci, A. Geochim. Cosmochim. Acta 2001, 65, 2361.  doi: 10.1016/S0016-7037(01)00589-0

    22. [22]

      Tan, W. F; Zhou, S. Z.; Liu, F.; Feng, X. H.; Li, X. H. Soils 2007, 39(5), 726(in Chinese).
       

    23. [23]

      Xu, R. K.; Zhao, A. Z.; Jiang, J. Ecol. Environ. 2011, 20(10), 1395 (in Chinese).  doi: 10.3969/j.issn.1674-5906.2011.10.002

    24. [24]

      Yu, X. J.; Chou, R. L. Chongqing Environ. Sci. 1998, 20(3), 11(in Chinese).
       

    25. [25]

      Stumm, W. Chemistry of the Solid-water Interface:Processes at the Mineral-water and Particle-water Interface in Natural Systems, John Wiley & Son Inc., New York, 1992. pp. 13~23.

    26. [26]

      Tombácz, E.; Szekeres, M. Langmuir 2001, 17, 1411.  doi: 10.1021/la001322j

    27. [27]

      Davis, J. A.; Leckie, J. O. J. Colloid Interface Sci. 1978, 67, 90.  doi: 10.1016/0021-9797(78)90217-5

    28. [28]

      Cagnasso, M.; Boero, V.; Franchini, M. A.; Chorover, J. Colloids Surf., B 2010, 76, 456.  doi: 10.1016/j.colsurfb.2009.12.005

    29. [29]

      Liu, T.; Li, X.; Li, F.; Zhang, W.; Chen, M.; Zhou, S. Colloids Surf., A 2011, 379(1), 143.
       

    30. [30]

      Li, X.; Liu, T.; Li, F.; Zhang, W.; Zhou, S.; Li, Y. J. Soil. Sediment. 2012, 12(2), 217.  doi: 10.1007/s11368-011-0433-5

    31. [31]

      Zhou, D. H.; Li, X. H.; Xu, F. L. J. Huazhong Agric. Univ. 1996, 15(2), 153(in Chinese).
       

    32. [32]

      Liu, T.; Li, X.; Li, F.; Tao, L.; Liu, H. Soil Sci. 2014, 179, 468.  doi: 10.1097/SS.0000000000000092

    33. [33]

      Djomgoue, P.; Njopwouo, D. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275.
       

    34. [34]

      Saikia, B. J.; Parthasarathy, G. J. Mod. Phys. 2010, 1, 206.  doi: 10.4236/jmp.2010.14031

    35. [35]

      Lu, S. J.; Tan, W. F.; Liu, F.; Feng, X. H. Acta Pedol. Sin. 2006, 43(5), 756(in Chinese).
       

    36. [36]

      Szekeres, M.; Tombácz, E. Colloids Surf., A 2012, 414, 302.  doi: 10.1016/j.colsurfa.2012.08.027

    37. [37]

      Jolsterå, R.; Gunneriusson, L.; Forsling, W. J. Colloid Interface Sci. 2010, 342, 493.  doi: 10.1016/j.jcis.2009.10.080

    38. [38]

      Frini-Srasra, N.; Kriaa, A.; Srasra, E. Russ. J. Electrochem. 2007, 43, 795.  doi: 10.1134/S1023193507070099

    39. [39]

      Wu, Z. S.; Zhang, W. M.; Sun, Z. X. Acta Chim. Sinica 2010, 68(8), 769(in Chinese).
       

    40. [40]

      Davis, J. A.; Kent, D. Rev. Mineral. Geochem. 1990, 23, 177.
       

    41. [41]

      Kubicki, J. D.; Paul, K. W.; Kabalan, L.; Zhu, Q.; Mrozik, M. K.; Aryanpour, M.; Pierre-Louis, A. M.; Strongin, D. R. Langmuir 2012, 8, 14573.
       

    42. [42]

      Cornell, R. M.; Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, 2003, pp. 221~223.

    43. [43]

      Pagnanelli, F.; Bornoroni, L.; Toro, L. Environ. Sci. Technol. 2004, 38, 5443.  doi: 10.1021/es049760q

    44. [44]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2014, 48, 14564.  doi: 10.1021/es503777a

    45. [45]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(13), 7350.  doi: 10.1021/es400362w

    46. [46]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(23), 13712.  doi: 10.1021/es403709v

    47. [47]

      Liu, T.; Li, X.; Zhang, W.; Hu, M.; Li, F. J. Colloid Interface Sci. 2014, 423, 25.  doi: 10.1016/j.jcis.2014.02.026

    48. [48]

      Yanina, S. V.; Rosso, K. M. Science 2008, 320(5873), 218.  doi: 10.1126/science.1154833

    49. [49]

      Janusz, W.; Skwarek, E.; Zarko, V. I.; Gun'ko, V. M. Physicochem. Probl. Miner. Process. 2007, 41, 215.
       

    50. [50]

      Pyman, M.; Bowden, J.; Posner, A. Soil Res. 1979, 17, 191.  doi: 10.1071/SR9790191

    51. [51]

      Yu, T. R.; Ji, G. L.; Ding, C. P. Electrochemical Behavior of Variable Charge Soils, Vol. 2, Eds.:Yu, T. R.; Zhao, A. Z., Science Press, Beijing, 1996, p. 9(in Chinese).

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(10)
  • Abstract views(2483)
  • HTML views(899)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return