Citation: Huang Xiao-yue, Wang Wei, Ling Lan, Zhang Wei-xian. Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment[J]. Acta Chimica Sinica, ;2017, 75(6): 529-537. doi: 10.6023/A17020051 shu

Heavy Metal-nZVI Reactions: the Core-shell Structure and Applications for Heavy Metal Treatment

  • Corresponding author: Ling Lan, linglan@tongji.edu.cn Zhang Wei-xian, zhangwx@tongji.edu.cn
  • Received Date: 13 February 2017

    Fund Project: the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 21677107

Figures(9)

  • Heavy metals are nonbiodegradable and bioaccumulative contaminants with high toxicity, thus heavy metal contamination and treatment have been hot research topics in recent years. Nanoscale zero-valent iron (nZVI) has received considerable attentions for its potential as a remedial agent for heavy metal sequestration and immobilization. In this paper, an overview is provided highlighting recent research progress on heavy metal-nZVI reactions, both laboratory studies and engineering applications are discussed. The core-shell structure with the core being metallic and the shell being iron oxides and the surface chemistry properties endow nZVI with unique and multifaceted functions for heavy metal removal including sorption, reduction and precipitation. Particle size of nZVI is in the range of nanoscale that imparts it with large specific surface area, high surface activity, and high density of reactive surface sites. A hybrid of effects, including instant separation, isolation, immobilization, and toxicity reduction can be achieved at the same time, making nZVI an effective remedial reagent for various heavy metals. Recent progress in instrumental analysis, especially the development of high-resolution electron microscopy, offers much-enhanced capability and new insights into the core-shell nature of nZVI and mechanisms of the heavy metal-nZVI reactions on a single nanoparticle. Research results obtained from a spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) integrated with high sensitive X-ray energy dispersive spectroscopy (EDS) provide detailed information on the fine structural features of nZVI and the intraparticle reactions with individual nanoparticles. Technical feasibility and operational advantages of using nZVI for the treatment of industrial wastewater are assessed through systematic laboratory and pilot scale studies. Based on the encouraging results of bench-scale experiments, we have successfully applied nZVI for large scale applications of nZVI for treatment of industrial wastewater containing heavy metals such as Cu, As, Pb and Zn. The long-term operation results show tremendous potentials of nZVI-based process as an efficient method for heavy metal treatment.
  • 加载中
    1. [1]

      Agarwal, S. K. Heavy Metal Pollution, APH publishing, New Delhi, 2009.

    2. [2]

      Asrari, E. Heavy Metal Contamination of Water and Soil:Analysis, Assessment, and Remediation Strategies, CRC Press, 2014.

    3. [3]

      Fu, J. J.; Wang, Y. W.; Zhou, L. J.; Zhang, A. Q.; Jiang, G. B. Prog. Chem. 2011, 23, 1756(in Chinese).
       

    4. [4]

      Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C. A. Science 2013, 341, 866.  doi: 10.1126/science.1237484

    5. [5]

      Cullen, W. R.; Reimer, K. J. Chem. Rev. 1989, 89, 713.  doi: 10.1021/cr00094a002

    6. [6]

      Kotas, J.; Stasicka, Z. Environ. Pollut. 2000, 107, 263.  doi: 10.1016/S0269-7491(99)00168-2

    7. [7]

      Järup, L. Brit. Med. Bull. 2003, 68, 167.  doi: 10.1093/bmb/ldg032

    8. [8]

      Goyer, R.; Golub, M.; Choudhury, H.; Hughes, M.; Kenyon, E.; Stifelman, M. In US Environmental Protection Agency, Risk Assessment Forum, Vol. 1200, Washington, DC, 2004.

    9. [9]

      El Samrani, A. G.; Lartiges, B. S.; Villiéras, F. Water Res. 2008, 42, 951.  doi: 10.1016/j.watres.2007.09.009

    10. [10]

      Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Water Res. 2002, 36, 4757.  doi: 10.1016/S0043-1354(02)00149-5

    11. [11]

      Fu, F.; Wang, Q. J. Environ. Manage. 2011, 92, 407.
       

    12. [12]

      Liu, Y.; Liang, P.; Guo, L.; Lu, H. B. Acta Chim. Sinica 2005, 63, 312(in Chinese).  doi: 10.3321/j.issn:0251-0790.2005.02.021
       

    13. [13]

      Wan, Q. F.; Ren, Y. M.; Wang, L.; Jiang, H. Z.; Deng, D. C.; Bai, Y.; Xia, C. Q. Acta Chim. Sinica 2011, 69, 1780(in Chinese).
       

    14. [14]

      Li, X. Q.; Zhang, W. X. J. Phys. Chem. C 2007, 111, 6939.  doi: 10.1021/jp0702189

    15. [15]

      Yan, W. L.; Herzing, A. A.; Kiely, C. J.; Zhang, W. X. J. Contam. Hydrol. 2010, 118, 96.  doi: 10.1016/j.jconhyd.2010.09.003

    16. [16]

      Li, S. L.; Wang, W.; Liang, F. P.; Zhang, W. X. J. Hazard. Mater. 2017, 322, 163.  doi: 10.1016/j.jhazmat.2016.01.032

    17. [17]

      Hua, M.; Zhang, S. J.; Pan, B. C.; Zhang, W. M.; Lv, L.; Zhang, Q. -X. J. Hazard. Mater. 2012, 211, 317.
       

    18. [18]

      Choi, C. J.; Dong, X. L.; Kim, B. K. Mater. Trans. 2001, 42, 2046.  doi: 10.2320/matertrans.42.2046

    19. [19]

      Crane, R.; Dickinson, M.; Popescu, I.; Scott, T. Water Res. 2011, 45, 2931.  doi: 10.1016/j.watres.2011.03.012

    20. [20]

      Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. Inorg. Chem. 1995, 34, 28.  doi: 10.1021/ic00105a009

    21. [21]

      Karlsson, M.; Deppert, K.; Wacaser, B.; Karlsson, L.; Malm, J. O. Appl. Phys. A 2005, 80, 1579.  doi: 10.1007/s00339-004-2987-1

    22. [22]

      Kuhn, L. T.; Bojesen, A.; immermann, L.; Nielsen, M. M. J. Phys.:Condens. Matter 2002, 14, 13551.  doi: 10.1088/0953-8984/14/49/311

    23. [23]

      Carpenter, E.; Calvin, S.; Stroud, R.; Harris, V. Chem. Mater. 2003, 15, 3245.  doi: 10.1021/cm034131l

    24. [24]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    25. [25]

      Wang, C.; Baer, D. R.; Amonette, J. E.; Engelhard, M. H.; Antony, J.; Qiang, Y. J. Am. Chem. Soc. 2009, 131, 8824.  doi: 10.1021/ja900353f

    26. [26]

      Zhdanov, V. P.; Kasemo, B. Chem. Phys. Lett. 2008, 452, 285.  doi: 10.1016/j.cplett.2008.01.006

    27. [27]

      Wang, C. M.; Baer, D. R.; Thomas, L. E.; Amonette, J. E.; Antony, J.; Qiang, Y.; Duscher, G. J. Appl. Phys. 2005, 98, 094308.  doi: 10.1063/1.2130890

    28. [28]

      Wang, Q.; Kanel, S. R.; Park, H.; Ryu, A.; Choi, H. J. Nanopart. Res. 2009, 11, 749.  doi: 10.1007/s11051-008-9524-7

    29. [29]

      Ling, L.; Pan, B. C.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    30. [30]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 209.  doi: 10.1021/ez4002054

    31. [31]

      Ling, L.; Zhang, W. X. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    32. [32]

      Chen, G. Sep. Purif. Technol. 2004, 38, 11.  doi: 10.1016/j.seppur.2003.10.006

    33. [33]

      Grosvenor, A.; Kobe, B.; McIntyre, N. Surf. Sci. 2004, 572, 217.  doi: 10.1016/j.susc.2004.08.035

    34. [34]

      Liu, A.; Zhang, W. X. Analyst 2014, 139, 4512.  doi: 10.1039/C4AN00679H

    35. [35]

      Scherer, M. M.; Balko, B. A.; Tratnyek, P. G. The Role of Oxides in Reduction Reactions at the Metal-Water Interface, ACS Symposium Series, American Chemical Society, 1998.

    36. [36]

      Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J. J.; Lecomte, P.; Génin, J. M. R. Environ. Sci. Technol. 2000, 34, 438.  doi: 10.1021/es9903779

    37. [37]

      Melitas, N.; Chuffe-Moscoso, O.; Farrell, J. Environ. Sci. Technol. 2001, 35, 3948.  doi: 10.1021/es001923x

    38. [38]

      Li, X. Q.; Zhang, W. X. Langmuir 2006, 22, 4638.  doi: 10.1021/la060057k

    39. [39]

      Fan, H. J.; Gösele, U.; Zacharias, M. Small 2007, 3, 1660.  doi: 10.1002/(ISSN)1613-6829

    40. [40]

      Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.  doi: 10.1126/science.1096566

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(91)
  • Abstract views(4252)
  • HTML views(1558)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return