Citation: Wu Wen-Ting, Zhang Liming, You Shu-Li. Recent Progress on Gold-catalyzed Dearomatization Reactions[J]. Acta Chimica Sinica, ;2017, 75(5): 419-438. doi: 10.6023/A17020049 shu

Recent Progress on Gold-catalyzed Dearomatization Reactions

Figures(31)

  • Homogeneous gold catalysis has experienced rapid development since 2004 and generally exhibited high efficiency and good functional group tolerance. On the other hand, catalytic dearomatization reactions provide a unique and straight approach to the construction of highly functionalized molecules with diverse three-dimensional structures from simple aromatic compounds. In this perspective, recent examples on gold-catalyzed dearomatization reactions are summarized in two main categories: gold-catalyzed rearrangements and gold-catalyzed hydrofunctionalizations of alkynes and allenes. In the first category, intra-and inter-molecular dearomatization reactions were achieved via gold-catalyzed rearrangements of propargylic ester and its derivatives. Although this area is still at its early stage, several outstanding asymmetric examples have been reported by Shi and Toste. In the second category, an array of dearomatization reactions via gold-catalyzed hydrofunctionalizations of alkynes and allenes were presented. All these cases have shown great potentials for convenient and straightforward construction of spiro and/or bridged polycyclic molecules, and some of them have exhibited excellent enantioselectivity. In addition, salient features and proposed mechanisms for these two types of reactions are also described.
  • 加载中
    1. [1]

      Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.  doi: 10.1021/ja00280a056

    2. [2]

      (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415; (b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563.

    3. [3]

      For recent books: (a) Toste, F. D.; Michelet, V. Gold Catalysis: An Homogeneous Approach, Imperial College Press, London, 2014; (b) Slaughter, L. M. Homogeneous Gold Catalysis, Springer, 2015; (c) Rappoport, Z.; Liebman, J. F.; Marek, I. The Chemistry of Organogold Compounds, Wiley, Chichester, 2014.

    4. [4]

      For recent reviews: (a) Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864; (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966; (c) Zhang, L. Acc. Chem. Res. 2014, 47, 877; (d) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889; (e) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902; (f) Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913; (g) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941; (h) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. Chem. Soc. Rev. 2014, 43, 5245; (i) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066; (j) Inamdar, S. M.; Konala, A.; Patil, N. T. Chem. Commun. 2014, 50, 15124; (k) Obradors, C.; Echavarren, A. M. Chem. Commun. 2014, 50, 16; (l) Gu, P.; Xu, Q.; Shi, M. Tetrahedron Lett. 2014, 55, 577; (m) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677; (n) Joost, M.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 2015, 54, 15022; (o) Jia, M.; Bandini, M. ACS Catal. 2015, 5, 1638; (p) Debrouwer, W.; Heugebaert, T. S. A.; Roman, B. I.; Stevens, C. V. Adv. Synth. Catal. 2015, 357, 2975; (q) Goodwin, J. A.; Aponick, A. Chem. Commun. 2015, 51, 8730; (r) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321; (s) Ranieri, B.; Escofet, I.; Echavarren, A. M. Org. Biomol. Chem. 2015, 13, 7103; (t) Wei, F.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. Sci. Bull. 2015, 60, 1479; (u) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506; (v) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448; (w) Zi, W.; Dean, T. F. Chem. Soc. Rev. 2016, 45, 4567; (x) Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467.

    5. [5]

      (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766; (b) Alcaide, B.; Almendros, P.; Alonso, J. M. Molecules 2011, 16, 7815; (c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448; (d) Barbour, P. M.; Marholz, L. J.; Chang, L.; Xu, W.; Wang, X. Chem. Lett. 2014, 43, 572; (e) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953; (f) Füerstner, A. Angew. Chem., Int. Ed. 2014, 53, 8587; (g) Füerstner, A. Acc. Chem. Res. 2014, 47, 925; (h) Zhang, Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489; (i) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.

    6. [6]

      Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395.  doi: 10.1038/nature05592

    7. [7]

    8. [8]

    9. [9]

      (a) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994; (b) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536; (c) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084; (d) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280; (e) Wei, Y.; Shi, M. ACS Catal. 2016, 2515.

    10. [10]

      Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.  doi: 10.1039/C0CS00041H

    11. [11]

      Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804.  doi: 10.1021/ja056419c

    12. [12]

      Yang, J.-M.; Li, P.-H.; Wei, Y.; Tang, X.-Y.; Shi, M. Chem. Commun. 2016, 52, 346.  doi: 10.1039/C5CC08381H

    13. [13]

      Zi, W.; Wu, H.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3225.  doi: 10.1021/jacs.5b00613

    14. [14]

      Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.  doi: 10.1021/ja077948e

    15. [15]

      Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598.  doi: 10.1021/ja804690u

    16. [16]

      Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916.  doi: 10.1021/ja304506g

    17. [17]

      Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2014, 16, 3138.  doi: 10.1021/ol5012604

    18. [18]

      (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167; (b) Kitamura, T. Eur. J. Org. Chem. 2009, 2009, 1111; (d) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575.

    19. [19]

      Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.  doi: 10.1002/(ISSN)1521-3765

    21. [21]

      Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Org. Lett. 2011, 13, 3458.  doi: 10.1021/ol201194n

    22. [22]

      Cheng, B.; Huang, G.; Xu, L.; Xia, Y. Org. Biomol. Chem. 2012, 10, 4417.  doi: 10.1039/c2ob25316j

    23. [23]

      Xu, W.; Wang, W.; Wang, X. Angew. Chem., Int. Ed. 2015, 54, 9546.  doi: 10.1002/anie.v54.33

    24. [24]

      Nishiyama, D.; Ohara, A.; Chiba, H.; Kumagai, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2016, 18, 1670.  doi: 10.1021/acs.orglett.6b00536

    25. [25]

      Zhang, L.; Wang, Y.; Yao, Z. J.; Wang, S.; Yu, Z.-X. J. Am. Chem. Soc. 2015, 137, 13290.  doi: 10.1021/jacs.5b05971

    26. [26]

      Nemoto, T.; Matsuo, N.; Hamada, Y. Adv. Synth. Catal. 2014, 356, 2417.  doi: 10.1002/adsc.v356.11/12

    27. [27]

      Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008.  doi: 10.1021/ol503022h

    28. [28]

      Wu, W.-T.; Xu, R.-Q.; Zhang, L.; You, S.-L. Chem. Sci. 2016, 7, 3427.  doi: 10.1039/C5SC04130A

    29. [29]

      Liu, Y.; Xu, W.; Wang, X. Org. Lett. 2010, 12, 1448.  doi: 10.1021/ol100153h

    30. [30]

      Noey, E. L.; Wang, X.; Houk, K. N. J. Org. Chem. 2011, 76, 3477.  doi: 10.1021/jo200556f

    31. [31]

      Podoll, J. D.; Liu, Y.; Chang, L.; Walls, S.; Wang, W.; Wang, X. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15573.  doi: 10.1073/pnas.1310459110

    32. [32]

      Barbour, P. M.; Podoll, J. D.; Marholz, L. J.; Wang, X. Bioorg. Med. Chem. Lett. 2014, 24, 5602.  doi: 10.1016/j.bmcl.2014.10.094

    33. [33]

      Chang, L.; Podoll, J. D.; Wang, W.; Walls, S.; O'Rourke, C. P.; Wang, X. J. Med. Chem. 2014, 57, 3803.  doi: 10.1021/jm500146g

    34. [34]

      Barbour, P. M.; Wang, W.; Chang, L.; Pickard, K. L.; Rais, R.; Slusher, B. S.; Wang, X. Adv. Synth. Catal. 2016, 358, 1482.  doi: 10.1002/adsc.v358.9

    35. [35]

      Cera, G.; Crispino, P.; Monari, M.; Bandini, M. Chem. Commun. 2011, 47, 7803.  doi: 10.1039/c1cc12328a

    36. [36]

      Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533.  doi: 10.1002/anie.200904388

    37. [37]

      Cera, G.; Chiarucci, M.; Bandini, M. Pure Appl. Chem. 2012, 84, 1673.

    38. [38]

      Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350.  doi: 10.1021/ol300297t

    39. [39]

      Zheng, N.; Chang, Y.-Y.; Zhang, L.-J.; Gong, J.-X.; Yang, Z. Chem. Asian J. 2016, 11, 371.  doi: 10.1002/asia.v11.3

    40. [40]

      Modha, S. G.; Kumar, A.; Vachhani, D. D.; Jacobs, J.; Sharma, S. K.; Parmar, V. S.; Van Meervelt, L.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2012, 51, 9572.  doi: 10.1002/anie.v51.38

    41. [41]

      Modha, S. G.; Vachhani, D. D.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 6550.  doi: 10.1039/c2cc32586a

    42. [42]

      Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Beilstein J. Org. Chem. 2013, 9, 2097.  doi: 10.3762/bjoc.9.246

    43. [43]

      Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Angew. Chem., Int. Ed. 2015, 54, 7862.  doi: 10.1002/anie.201502256

    44. [44]

    45. [45]

      Shibuya, T.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2012, 51, 6219.  doi: 10.1002/anie.201202165

    46. [46]

      Oka, J.; Okamoto, R.; Noguchi, K.; Tanaka, K. Org. Lett. 2015, 17, 676.  doi: 10.1021/ol503698s

    47. [47]

      Baba, T.; Oka, J.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 2015, 4374.  doi: 10.1002/ejoc.201500486

    48. [48]

      Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875.  doi: 10.1002/chem.201403155

    49. [49]

      Shen, Z.-Q.; Li, X.-X.; Shi, J.-W.; Chen, B.-L.; Chen, Z. Tetrahedron Lett. 2015, 56, 4080.  doi: 10.1016/j.tetlet.2015.05.021

    50. [50]

      Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M. Chem. Commun. 2015, 51, 2320.  doi: 10.1039/C4CC08736D

    51. [51]

      Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini, M. Chem. Eur. J. 2015, 21, 18445.  doi: 10.1002/chem.201503598

    52. [52]

      Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.  doi: 10.1039/c3cc41514g

    53. [53]

      Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J. Chem. Sci. 2015, 6, 5564.  doi: 10.1039/C5SC01827G

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(53)
  • Abstract views(2328)
  • HTML views(529)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return